parent
5cf34fc03f
commit
df88f44255
|
@ -1,6 +1,6 @@
|
|||
"""Module contain algorithms for (burdensome) calculations.
|
||||
"""Module contain algorithms for low-rank models.
|
||||
|
||||
There is no typechecking of any kind here, just focus on speed
|
||||
There is almost no typechecking of any kind here, just focus on speed
|
||||
"""
|
||||
|
||||
import math
|
||||
|
@ -56,40 +56,47 @@ def pca(a, aopt, scale='scores', mode='normal'):
|
|||
|
||||
|
||||
def pcr(a, b, aopt=2, scale='scores', mode='normal'):
|
||||
"""Returns Principal component regression model."""
|
||||
m, n = a.shape
|
||||
try:
|
||||
k, l = b.shape
|
||||
except:
|
||||
k = b.shape[0]
|
||||
l = 1
|
||||
B = empty((aopt, n, l))
|
||||
U, s, Vt = svd(a, full_matrices=True)
|
||||
T = U*s
|
||||
T = T[:,:aopt]
|
||||
P = Vt[:aopt,:].T
|
||||
Q = dot(dot(inv(dot(T.T, T)), T.T), b).T
|
||||
for i in range(aopt):
|
||||
ti = T[:,:i+1]
|
||||
r = dot(dot(inv(dot(ti.T,ti)), ti.T), b)
|
||||
B[i] = dot(P[:,:i+1], r)
|
||||
E = a - dot(T, P.T)
|
||||
F = b - dot(T, Q.T)
|
||||
"""Principal Component Regression.
|
||||
|
||||
Returns
|
||||
|
||||
"""
|
||||
m, n = m_shape(a)
|
||||
B = empty((aopt, n, l))
|
||||
dat = pca(a, aopt=aopt, scale=scale, mode='normal', center_axis=0)
|
||||
T = dat['T']
|
||||
weigths = apply_along_axis(vnorm, 0, T)
|
||||
if scale=='loads':
|
||||
# fixme: check weights
|
||||
Q = dot(b.T, T*weights)
|
||||
else:
|
||||
Q = dot(b.T, T/weights**2)
|
||||
|
||||
if mode=='fast':
|
||||
return {'T', T:, 'P':P, 'Q':Q}
|
||||
if mode=='detailed':
|
||||
for i in range(1, aopt+1, 1):
|
||||
F[i,:,:] = b - dot(T[:,i],Q[:,:i].T)
|
||||
else:
|
||||
F = b - dot(T, Q.T)
|
||||
#fixme: explained variance in Y + Y-var leverages
|
||||
dat.update({'Q',Q, 'F':F})
|
||||
return dat
|
||||
|
||||
return {'T':T, 'P':P,'Q': Q, 'B':B, 'E':E, 'F':F}
|
||||
|
||||
def pls(a, b, aopt=2, scale='scores', mode='normal', ab=None):
|
||||
"""Kernel pls for tall/wide matrices.
|
||||
"""Partial Least Squares Regression.
|
||||
|
||||
Applies plsr to given matrices and returns results in a dictionary.
|
||||
|
||||
Fast pls for calibration. Only inefficient for many Y-vars.
|
||||
|
||||
"""
|
||||
m, n = a.shape
|
||||
if ab!=None:
|
||||
mm, l = m_shape(ab)
|
||||
mm, ll = m_shape(ab)
|
||||
else:
|
||||
k, l = m_shape(b)
|
||||
|
||||
k, l = m_shape(b)
|
||||
assert(m==mm)
|
||||
assert(l==ll)
|
||||
W = empty((n, aopt))
|
||||
P = empty((n, aopt))
|
||||
R = empty((n, aopt))
|
||||
|
@ -97,7 +104,7 @@ def pls(a, b, aopt=2, scale='scores', mode='normal', ab=None):
|
|||
T = empty((m, aopt))
|
||||
B = empty((aopt, n, l))
|
||||
|
||||
if ab==None:
|
||||
if ab==None:
|
||||
ab = dot(a.T, b)
|
||||
for i in range(aopt):
|
||||
if ab.shape[1]==1:
|
||||
|
@ -105,11 +112,11 @@ def pls(a, b, aopt=2, scale='scores', mode='normal', ab=None):
|
|||
else:
|
||||
u, s, vh = svd(dot(ab.T, ab))
|
||||
w = dot(ab, u[:,:1])
|
||||
|
||||
|
||||
w = w/vnorm(w)
|
||||
r = w.copy()
|
||||
if i>0:
|
||||
for j in range(0,i,1):
|
||||
if i>0: # recursive estimate to
|
||||
for j in range(0, i, 1):
|
||||
r = r - dot(P[:,j].T, w)*R[:,j][:,newaxis]
|
||||
t = dot(a, r)
|
||||
tt = vnorm(t)**2
|
||||
|
@ -130,7 +137,7 @@ def pls(a, b, aopt=2, scale='scores', mode='normal', ab=None):
|
|||
|
||||
Q[:,i] = q.ravel()
|
||||
B[i] = dot(R[:,:i+1], Q[:,:i+1].T)
|
||||
|
||||
|
||||
if mode=='detailed':
|
||||
E = empty((aopt, m, n))
|
||||
F = empty((aopt, k, l))
|
||||
|
@ -147,13 +154,13 @@ def pls(a, b, aopt=2, scale='scores', mode='normal', ab=None):
|
|||
W = W*tnorm
|
||||
Q = Q*tnorm
|
||||
P = P*tnorm
|
||||
|
||||
|
||||
return {'B':B, 'Q':Q, 'P':P, 'T':T, 'W':W, 'R':R, 'E':E, 'F':F}
|
||||
|
||||
def w_simpls(aat, b, aopt):
|
||||
""" Simpls for wide matrices.
|
||||
Fast pls for crossval, used in calc rmsep for wide X
|
||||
There is no P,W. T is normalised
|
||||
There is no P or W. T is normalised
|
||||
"""
|
||||
bb = b.copy()
|
||||
m, m = aat.shape
|
||||
|
@ -181,7 +188,7 @@ def w_simpls(aat, b, aopt):
|
|||
def bridge(a, b, aopt, scale='scores', mode='normal', r=0):
|
||||
"""Undeflated Ridged svd(X'Y)
|
||||
"""
|
||||
m, n = a.shape
|
||||
m, n = m_shape(a)
|
||||
k, l = m_shape(b)
|
||||
u, s, vt = svd(b, full_matrices=0)
|
||||
g0 = dot(u*s, u.T)
|
||||
|
@ -204,7 +211,7 @@ def bridge(a, b, aopt, scale='scores', mode='normal', r=0):
|
|||
B = zeros((aopt, n, l), dtype='f')
|
||||
for i in range(aopt):
|
||||
B[i] = dot(W[:,:i+1], Q[:,:i+1].T)
|
||||
|
||||
|
||||
if mode == 'detailed':
|
||||
E = empty((aopt, m, n))
|
||||
F = empty((aopt, k, l))
|
||||
|
@ -214,14 +221,23 @@ def bridge(a, b, aopt, scale='scores', mode='normal', r=0):
|
|||
else: #normal
|
||||
F = b - dot(a, B[-1])
|
||||
E = a - dot(T, W.T)
|
||||
# leverages
|
||||
# fixme: probably need an orthogonal basis for row-space leverage
|
||||
# T (scores) are not orthogonal
|
||||
# Using a qr decomp to get an orthonormal basis for row-space
|
||||
#Tq = qr(T)[0]
|
||||
#s_lev,v_lev = leverage(aopt,Tq,W)
|
||||
# explained variance
|
||||
#var_x, exp_var_x = variances(a,T,W)
|
||||
#qnorm = apply_along_axis(norm, 0, Q)
|
||||
#var_y, exp_var_y = variances(b,U,Q/qnorm)
|
||||
|
||||
if scale=='loads':
|
||||
T = T/tnorm
|
||||
W = W*tnorm
|
||||
Q = Q*tnorm
|
||||
|
||||
|
||||
return {'B':B, 'W':W, 'T':T, 'Q':Q, 'E':E, 'F':F, 'U':U, 'P':W}
|
||||
|
||||
|
||||
|
||||
def nipals_lpls(X, Y, Z, a_max, alpha=.7, mean_ctr=[2, 0, 1], mode='normal', scale='scores', verbose=False):
|
||||
|
|
Reference in New Issue