parent
5cf34fc03f
commit
df88f44255
|
@ -1,6 +1,6 @@
|
||||||
"""Module contain algorithms for (burdensome) calculations.
|
"""Module contain algorithms for low-rank models.
|
||||||
|
|
||||||
There is no typechecking of any kind here, just focus on speed
|
There is almost no typechecking of any kind here, just focus on speed
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import math
|
import math
|
||||||
|
@ -56,40 +56,47 @@ def pca(a, aopt, scale='scores', mode='normal'):
|
||||||
|
|
||||||
|
|
||||||
def pcr(a, b, aopt=2, scale='scores', mode='normal'):
|
def pcr(a, b, aopt=2, scale='scores', mode='normal'):
|
||||||
"""Returns Principal component regression model."""
|
"""Principal Component Regression.
|
||||||
m, n = a.shape
|
|
||||||
try:
|
|
||||||
k, l = b.shape
|
|
||||||
except:
|
|
||||||
k = b.shape[0]
|
|
||||||
l = 1
|
|
||||||
B = empty((aopt, n, l))
|
|
||||||
U, s, Vt = svd(a, full_matrices=True)
|
|
||||||
T = U*s
|
|
||||||
T = T[:,:aopt]
|
|
||||||
P = Vt[:aopt,:].T
|
|
||||||
Q = dot(dot(inv(dot(T.T, T)), T.T), b).T
|
|
||||||
for i in range(aopt):
|
|
||||||
ti = T[:,:i+1]
|
|
||||||
r = dot(dot(inv(dot(ti.T,ti)), ti.T), b)
|
|
||||||
B[i] = dot(P[:,:i+1], r)
|
|
||||||
E = a - dot(T, P.T)
|
|
||||||
F = b - dot(T, Q.T)
|
|
||||||
|
|
||||||
return {'T':T, 'P':P,'Q': Q, 'B':B, 'E':E, 'F':F}
|
Returns
|
||||||
|
|
||||||
|
"""
|
||||||
|
m, n = m_shape(a)
|
||||||
|
B = empty((aopt, n, l))
|
||||||
|
dat = pca(a, aopt=aopt, scale=scale, mode='normal', center_axis=0)
|
||||||
|
T = dat['T']
|
||||||
|
weigths = apply_along_axis(vnorm, 0, T)
|
||||||
|
if scale=='loads':
|
||||||
|
# fixme: check weights
|
||||||
|
Q = dot(b.T, T*weights)
|
||||||
|
else:
|
||||||
|
Q = dot(b.T, T/weights**2)
|
||||||
|
|
||||||
|
if mode=='fast':
|
||||||
|
return {'T', T:, 'P':P, 'Q':Q}
|
||||||
|
if mode=='detailed':
|
||||||
|
for i in range(1, aopt+1, 1):
|
||||||
|
F[i,:,:] = b - dot(T[:,i],Q[:,:i].T)
|
||||||
|
else:
|
||||||
|
F = b - dot(T, Q.T)
|
||||||
|
#fixme: explained variance in Y + Y-var leverages
|
||||||
|
dat.update({'Q',Q, 'F':F})
|
||||||
|
return dat
|
||||||
|
|
||||||
def pls(a, b, aopt=2, scale='scores', mode='normal', ab=None):
|
def pls(a, b, aopt=2, scale='scores', mode='normal', ab=None):
|
||||||
"""Kernel pls for tall/wide matrices.
|
"""Partial Least Squares Regression.
|
||||||
|
|
||||||
|
Applies plsr to given matrices and returns results in a dictionary.
|
||||||
|
|
||||||
Fast pls for calibration. Only inefficient for many Y-vars.
|
Fast pls for calibration. Only inefficient for many Y-vars.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
m, n = a.shape
|
m, n = a.shape
|
||||||
if ab!=None:
|
if ab!=None:
|
||||||
mm, l = m_shape(ab)
|
mm, ll = m_shape(ab)
|
||||||
else:
|
else:
|
||||||
k, l = m_shape(b)
|
k, l = m_shape(b)
|
||||||
|
assert(m==mm)
|
||||||
|
assert(l==ll)
|
||||||
W = empty((n, aopt))
|
W = empty((n, aopt))
|
||||||
P = empty((n, aopt))
|
P = empty((n, aopt))
|
||||||
R = empty((n, aopt))
|
R = empty((n, aopt))
|
||||||
|
@ -108,7 +115,7 @@ def pls(a, b, aopt=2, scale='scores', mode='normal', ab=None):
|
||||||
|
|
||||||
w = w/vnorm(w)
|
w = w/vnorm(w)
|
||||||
r = w.copy()
|
r = w.copy()
|
||||||
if i>0:
|
if i>0: # recursive estimate to
|
||||||
for j in range(0, i, 1):
|
for j in range(0, i, 1):
|
||||||
r = r - dot(P[:,j].T, w)*R[:,j][:,newaxis]
|
r = r - dot(P[:,j].T, w)*R[:,j][:,newaxis]
|
||||||
t = dot(a, r)
|
t = dot(a, r)
|
||||||
|
@ -153,7 +160,7 @@ def pls(a, b, aopt=2, scale='scores', mode='normal', ab=None):
|
||||||
def w_simpls(aat, b, aopt):
|
def w_simpls(aat, b, aopt):
|
||||||
""" Simpls for wide matrices.
|
""" Simpls for wide matrices.
|
||||||
Fast pls for crossval, used in calc rmsep for wide X
|
Fast pls for crossval, used in calc rmsep for wide X
|
||||||
There is no P,W. T is normalised
|
There is no P or W. T is normalised
|
||||||
"""
|
"""
|
||||||
bb = b.copy()
|
bb = b.copy()
|
||||||
m, m = aat.shape
|
m, m = aat.shape
|
||||||
|
@ -181,7 +188,7 @@ def w_simpls(aat, b, aopt):
|
||||||
def bridge(a, b, aopt, scale='scores', mode='normal', r=0):
|
def bridge(a, b, aopt, scale='scores', mode='normal', r=0):
|
||||||
"""Undeflated Ridged svd(X'Y)
|
"""Undeflated Ridged svd(X'Y)
|
||||||
"""
|
"""
|
||||||
m, n = a.shape
|
m, n = m_shape(a)
|
||||||
k, l = m_shape(b)
|
k, l = m_shape(b)
|
||||||
u, s, vt = svd(b, full_matrices=0)
|
u, s, vt = svd(b, full_matrices=0)
|
||||||
g0 = dot(u*s, u.T)
|
g0 = dot(u*s, u.T)
|
||||||
|
@ -214,6 +221,16 @@ def bridge(a, b, aopt, scale='scores', mode='normal', r=0):
|
||||||
else: #normal
|
else: #normal
|
||||||
F = b - dot(a, B[-1])
|
F = b - dot(a, B[-1])
|
||||||
E = a - dot(T, W.T)
|
E = a - dot(T, W.T)
|
||||||
|
# leverages
|
||||||
|
# fixme: probably need an orthogonal basis for row-space leverage
|
||||||
|
# T (scores) are not orthogonal
|
||||||
|
# Using a qr decomp to get an orthonormal basis for row-space
|
||||||
|
#Tq = qr(T)[0]
|
||||||
|
#s_lev,v_lev = leverage(aopt,Tq,W)
|
||||||
|
# explained variance
|
||||||
|
#var_x, exp_var_x = variances(a,T,W)
|
||||||
|
#qnorm = apply_along_axis(norm, 0, Q)
|
||||||
|
#var_y, exp_var_y = variances(b,U,Q/qnorm)
|
||||||
|
|
||||||
if scale=='loads':
|
if scale=='loads':
|
||||||
T = T/tnorm
|
T = T/tnorm
|
||||||
|
@ -223,7 +240,6 @@ def bridge(a, b, aopt, scale='scores', mode='normal', r=0):
|
||||||
return {'B':B, 'W':W, 'T':T, 'Q':Q, 'E':E, 'F':F, 'U':U, 'P':W}
|
return {'B':B, 'W':W, 'T':T, 'Q':Q, 'E':E, 'F':F, 'U':U, 'P':W}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def nipals_lpls(X, Y, Z, a_max, alpha=.7, mean_ctr=[2, 0, 1], mode='normal', scale='scores', verbose=False):
|
def nipals_lpls(X, Y, Z, a_max, alpha=.7, mean_ctr=[2, 0, 1], mode='normal', scale='scores', verbose=False):
|
||||||
""" L-shaped Partial Least Sqaures Regression by the nipals algorithm.
|
""" L-shaped Partial Least Sqaures Regression by the nipals algorithm.
|
||||||
|
|
||||||
|
|
Reference in New Issue