Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0

Added existing_identifiers function to Dataset.

Added colouring drag'n'drop to DAGPlot in gobrowser module.
This commit is contained in:
Einar Ryeng 2007-07-26 15:45:42 +00:00
parent a45743c31e
commit dc7f7dbde2
2 changed files with 50 additions and 1 deletions

View File

@ -194,6 +194,12 @@ class Dataset:
for key in idents if self._map[dim].has_key(key)] for key in idents if self._map[dim].has_key(key)]
return asarray(index) return asarray(index)
def existing_identifiers(self, dim, idents):
if not isinstance(idents, list) and not isinstance(idents, set):
raise ValueError("idents needs to be a list/set got: %s" %type(idents))
return [key for key in idents if self._map[dim].has_key(key)]
def copy(self): def copy(self):
""" Returns deepcopy of dataset. """ Returns deepcopy of dataset.
""" """

View File

@ -477,7 +477,6 @@ class PlotDagFunction(workflow.Function):
def run(self, selection): def run(self, selection):
g = self.get_network(list(selection['go-terms'])) g = self.get_network(list(selection['go-terms']))
# print g.edges()
ds = dataset.GraphDataset(networkx.adj_matrix(g), ds = dataset.GraphDataset(networkx.adj_matrix(g),
[('go-terms', g.nodes()), ('_go-terms', g.nodes())], [('go-terms', g.nodes()), ('_go-terms', g.nodes())],
name="DAG") name="DAG")
@ -674,3 +673,47 @@ class DagPlot(plots.Plot):
self.selected_nodes.set_linewidth(linewidth) self.selected_nodes.set_linewidth(linewidth)
self.canvas.draw() self.canvas.draw()
def is_mappable_with(self, obj):
"""Returns True if dataset/selection is mappable with this plot.
"""
if isinstance(obj, fluents.dataset.Dataset):
if self.current_dim in obj.get_dim_name():
return True
return False
def _update_color_from_dataset(self, ds):
"""Updates the facecolors from a dataset.
"""
array = ds.asarray()
#only support for 2d-arrays:
try:
m, n = array.shape
except:
raise ValueError, "No support for more than 2 dimensions."
# is dataset a vector or matrix?
if not n==1:
# we have a category dataset
if isinstance(ds, fluents.dataset.CategoryDataset):
vec = dot(array, diag(arange(n))).sum(1)
else:
vec = array.sum(1)
else:
vec = array.ravel()
indices = ds.get_indices(self.current_dim, self.nodes)
nodes = ds.existing_identifiers(self.current_dim, self.nodes)
v = vec.take(indices, 0)
d = dict(zip(nodes, list(v)))
map_vec = zeros(len(self.nodes))
for i, n in enumerate(self.nodes):
map_vec[i] = d.get(n, -1)
# update facecolors
self.node_collection.set_array(map_vec)
self.node_collection.set_clim(map_vec.min(), map_vec.max())
self.node_collection.update_scalarmappable() #sets facecolors from array
self.canvas.draw()