Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0
This commit is contained in:
Arnar Flatberg 2008-02-08 14:58:46 +00:00
parent 6b78629946
commit cb6d6b87cc
3 changed files with 560 additions and 178 deletions

View File

@ -11,24 +11,30 @@ def plot_corrloads(R, pc1=0,pc2=1,s=20, c='b', zorder=5,expvar=None,ax=None,draw
if ax==None or drawback==True: if ax==None or drawback==True:
radius = 1 radius = 1
center = (0,0) center = (0,0)
c100 = matplotlib.patches.Circle(center,radius=radius, c100 = matplotlib.patches.Circle(center,
facecolor='gray', radius=radius,
alpha=.1, facecolor=(0.97, .97, .97),
zorder=1) zorder=1,
c50 = matplotlib.patches.Circle(center, radius=radius/2.0, linewidth=1,
facecolor='gray', edgecolor=(0,0,0))
alpha=.1,
zorder=2) c50 = matplotlib.patches.Circle(center,
radius=radius/2.0,
facecolor=(.85,.85,.85),
zorder=1,
linewidth=1,
edgecolor=(0,0,0))
ax = pylab.gca() ax = pylab.gca()
ax.add_patch(c100) ax.add_patch(c100)
ax.add_patch(c50) ax.add_patch(c50)
ax.axhline(lw=1.5,color='k') ax.axhline(lw=1.5,color='k', zorder=4)
ax.axvline(lw=1.5,color='k') ax.axvline(lw=1.5,color='k', zorder=4)
# corrloads # corrloads
ax.scatter(R[:,pc1], R[:,pc2], s=s, c=c,zorder=zorder, **kwds) ax.scatter(R[:,pc1], R[:,pc2], s=s, c=c,zorder=zorder, **kwds)
ax.set_xlim([-1,1]) ax.set_xlim([-1.1,1.1])
ax.set_ylim([-1,1]) ax.set_ylim([-1.1,1.1])
if expvar!=None: if expvar!=None:
xstring = "Comp: %d expl.var: %.1f " %(pc1+1, expvar[pc1]) xstring = "Comp: %d expl.var: %.1f " %(pc1+1, expvar[pc1])
pylab.xlabel(xstring) pylab.xlabel(xstring)
@ -51,7 +57,7 @@ def dag(terms, ontology):
#setattr(dag, "_ontology", ontology) #setattr(dag, "_ontology", ontology)
return dag return dag
def plot_dag(dag, node_color='b', node_size=30,with_labels=False,nodelist=None,pos=None): def plot_dag(dag, node_color='b', node_size=30,with_labels=False,nodelist=None,pos=None,**kwd):
rpy.r.library("GOstats") rpy.r.library("GOstats")
@ -76,7 +82,7 @@ def plot_dag(dag, node_color='b', node_size=30,with_labels=False,nodelist=None,p
if len(node_color)>1: if len(node_color)>1:
assert(len(node_color)==len(nodelist)) assert(len(node_color)==len(nodelist))
nx.draw_networkx(G,pos, with_labels=with_labels, node_size=node_size, node_color=node_color, nodelist=nodelist) nx.draw_networkx(G,pos, with_labels=with_labels, node_size=node_size, node_color=node_color, nodelist=nodelist, **kwd)
return pos return pos

View File

@ -4,7 +4,7 @@ import rpy
silent_eval = rpy.with_mode(rpy.NO_CONVERSION, rpy.r) silent_eval = rpy.with_mode(rpy.NO_CONVERSION, rpy.r)
import collections import collections
def goterms_from_gene(genelist, ontology='BP', garbage=None, ic_cutoff=2.0): def goterms_from_gene(genelist, ontology='BP', garbage=['IEA'], ic_cutoff=2.0, verbose=False):
""" Returns the go-terms from a specified genelist (Entrez id). """ Returns the go-terms from a specified genelist (Entrez id).
Recalculates the information content if needed based on selected evidence codes. Recalculates the information content if needed based on selected evidence codes.
@ -30,10 +30,17 @@ def goterms_from_gene(genelist, ontology='BP', garbage=None, ic_cutoff=2.0):
ddef = False ddef = False
if ontology=='BP' and garbage!=None: if ontology=='BP' and garbage!=None:
# This is for ont=BP and garbage =['IEA', 'ISS', 'ND'] # This is for ont=BP and garbage =['IEA', 'ISS', 'ND']
rpy.r.load("ICsBPIMP_IGI_IPI_ISS_IDA_IEP_TAS_NAS_IC.rda") rpy.r.load("ICsBP_small.rda") # Excludes IEA
ic = rpy.r.assign("IC",rpy.r.IC, envir=rpy.r.GOSimEnv) ic = rpy.r.assign("IC",rpy.r.IC, envir=rpy.r.GOSimEnv)
print len(ic) max_val = 0
for key, val in ic.items():
if val != scipy.inf:
if val>max_val:
max_val = val
for key, val in ic.items():
ic[key] = val/max_val
else: else:
# NB! this IC is just for BP
ic = rpy.r('get("IC", envir=GOSimEnv)') ic = rpy.r('get("IC", envir=GOSimEnv)')
print "loading GO definitions environment" print "loading GO definitions environment"
@ -42,25 +49,57 @@ def goterms_from_gene(genelist, ontology='BP', garbage=None, ic_cutoff=2.0):
dd = 0 dd = 0
ii = 0 ii = 0
jj = 0 jj = 0
all = rpy.r.mget(gene_ids, rpy.r.GOENTREZID2GO,ifnotfound="NA") kk = 0
all = rpy.r.mget(genelist, rpy.r.GOENTREZID2GO,ifnotfound="NA")
n_ic = len(ic)
print "Number of terms with IC: %d" %n_ic
stopp = False
for gene, terms in all.items(): for gene, terms in all.items():
if verbose:
print "\n\n ======ITEM========\n"
print "Gene: " + str(gene)
print "Number of terms: %d " %len(terms)
print terms
print "---\n"
if stopp:
1/0
if terms!="NA": if terms!="NA":
for term,desc in terms.items(): for term, desc in terms.items():
if desc['Ontology'].lower() == ontology and term in ic: if verbose:
if ic[term]>.88: print "\nChecking term: " + str(term)
print "With description: " + str(desc)
if desc['Ontology'].lower() == ontology.lower() and term in ic:
if ic[term]>ic_cutoff:
#print ic[term]
jj+=1 jj+=1
if verbose:
print "too high" + str((gene, term))
stopp = True
continue continue
cc+=1 cc += 1
if verbose:
print "accepted" + str((gene, term))
gene2terms[gene].append(term) gene2terms[gene].append(term)
else: else:
dd+=1 if verbose:
print "Not accepted: " + str((gene, term))
if term not in ic:
if verbose:
print "Not in IC: " + str((gene, term))
kk+=1
if desc['Ontology'].lower() != ontology:
if verbose:
print "Not in Ontology" + str((gene, term))
dd+=1
else: else:
ii+=1 ii+=1
print "Number of genes total: %d" %len(all)
print "\nNumber of genes without annotation: %d" %ii print "\nNumber of genes without annotation: (%d (NA))" %ii
print "\nNumber of genes not in %s : %d " %(ontology, dd) print "\nNumber of terms with annoation but no IC: %d" %kk
print "\nNumber of genes with too high IC : %d " %jj print "\nNumber of terms not in %s : %d " %(ontology, dd)
print "\nNumber of terms with too high IC : %d " %jj
print "\n Number of accepted terms: %d" %cc
return gene2terms return gene2terms
@ -156,7 +195,7 @@ def parents_dag(go_terms, ontology=['BP']):
def gene_GO_hypergeo_test(genelist,universe="entrezUniverse",ontology="BP",chip = "hgu133a",pval_cutoff=0.01,cond=False,test_direction="over"): def gene_GO_hypergeo_test(genelist,universe="entrezUniverse",ontology="BP",chip = "hgu133a",pval_cutoff=0.01,cond=False,test_direction="over"):
#assert(scipy.alltrue([True for i in genelist if i in universe])) #assert(scipy.alltrue([True for i in genelist if i in universe]))
universeGeneIds=universe universeGeneIds = universe
params = rpy.r.new("GOHyperGParams", params = rpy.r.new("GOHyperGParams",
geneIds=genelist, geneIds=genelist,
annotation="hgu133a", annotation="hgu133a",
@ -222,5 +261,3 @@ def R_PLS(x,y,ncomp=3, validation='"LOO"'):
result = rpy.r(callstr) result = rpy.r(callstr)
return result return result
def gogene()

View File

@ -1,4 +1,4 @@
import sys import sys,time,cPickle
import rpy import rpy
from pylab import gca, figure, subplot,plot from pylab import gca, figure, subplot,plot
from scipy import * from scipy import *
@ -9,70 +9,214 @@ import rpy_go
sys.path.append("../../fluents") # home of dataset sys.path.append("../../fluents") # home of dataset
sys.path.append("../../fluents/lib") # home of cx_stats sys.path.append("../../fluents/lib") # home of cx_stats
sys.path.append("/home/flatberg/fluents/scripts/lpls") sys.path.append("/home/flatberg/fluents/scripts/lpls")
sys.path.append("/home/flatberg/pyblm/")
import dataset import dataset
import cx_stats import cx_stats
from engines import nipals_lpls import pyblm
from validation import lpls_val, lpls_jk from pyblm.engines import nipals_lpls, pls
from pyblm.crossvalidation import lpls_val, lpls_jk
from pyblm.statistics import pls_qvals
from plots_lpls import plot_corrloads, plot_dag from plots_lpls import plot_corrloads, plot_dag
import plots_lpls import plots_lpls
def iqr(X, axis=0):
"""Interquartile range filtering."""
def _iqr(c):
return stats.scoreatpercentile(c, 75) - stats.scoreatpercentile(c, 25)
return apply_along_axis(_iqr, axis, X)
# Possible outliers # Possible outliers
# http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16817967 # http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16817967
sample_outliers = ['OV:NCI_ADR_RES', 'CNS:SF_295', 'CNS:SF_539', 'RE:SN12C', 'LC:NCI_H226', 'LC:NCI_H522', 'PR:PC_3', 'PR:DU_145'] sample_outliers = ['OV:NCI_ADR_RES', 'CNS:SF_295', 'CNS:SF_539', 'RE:SN12C', 'LC:NCI_H226', 'LC:NCI_H522', 'PR:PC_3', 'PR:DU_145']
outlier = 'ME:LOXIMVI' # 19
####### OPTIONS ########### ####### OPTIONS ###########
# data # data
chip = "hgu133a" chip = "hgu133a"
use_data = 'uma' use_data = 'uma'
subset = 'plsr' #use_data = 'scherf'
small_test = False #use_data = 'uma'
use_sbg_subset = True # the sandberg nci-Ygroups subset
std_y = True
std_z = False
# go
ontology = "bp"
min_genes = 5
similarities = ("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin")
meth = similarities[2]
go_term_sim = "OA"
# lpls
a_max = 5
aopt = 2
xz_alpha = .4
w_alpha = .3
mean_ctr = [2, 0, 2]
nsets = None
qval_cutoff = 0.01
n_iter = 200
alpha_check = False if use_data == 'scherf':
calc_rmsep = False data_cached = False
use_saved_plsr_result = False
subset = 'plsr'
small_test = False
use_sbg_subset = True # the sandberg nci-Ygroups subset
std_y = False
std_z = False
# go
ontology = "bp"
min_genes = 5
similarities = ("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin")
meth = similarities[2]
go_term_sim = "OA"
# lpls
a_max = 10
aopt = 4
aopt = 2 # doubling-time
xz_alpha = .5
w_alpha = .3
center_axis = [2, 0, 2]
zorth = True
nsets = None
qval_cutoff = 0.1
n_iter = 50
alpha_check = True
calc_rmsep = True
bevel_check = False
save_calc = True
elif use_data == 'uma':
data_cached = False
use_saved_plsr_result = False
subset = 'iqr'
small_test = False
use_sbg_subset = True # the sandberg nci-Ygroups subset
std_y = False
std_z = False
# go
ontology = "bp"
min_genes = 5
similarities = ("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin")
meth = similarities[2]
go_term_sim = "OA"
# lpls
a_max = 10
aopt = 5
xz_alpha = .5
w_alpha = .3
center_axis = [2, 0, 2]
zorth = True
nsets = None
qval_cutoff = 0.01
n_iter = 50
alpha_check = True
calc_rmsep = True
bevel_check = False
save_calc = True
elif use_data == 'smoker':
data_cached = False
use_saved_plsr_result = False
#subset = 'plsr'
subset = 'plsr'
small_test = False
use_sbg_subset = False # the sandberg nci-Ygroups subset
std_y = False
std_z = False
# go
ontology = "bp"
min_genes = 5
similarities = ("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin")
meth = similarities[2]
go_term_sim = "OA"
# lpls
a_max = 5
aopt = 2
xz_alpha = .5
w_alpha = .3
center_axis = [2, 0, 2]
zorth = True
nsets = None
qval_cutoff = 0.01
n_iter = 50
alpha_check = True
calc_rmsep = True
bevel_check = False
save_calc = True
else:
raise ValueError
print "Using options for : " + use_data
######## DATA ########## ######## DATA ##########
if use_data=='smoker': if use_data=='smoker':
# full smoker data # full smoker data
DX = dataset.read_ftsv(open("../../data/smokers-full/Smokers.ftsv")) DX = dataset.read_ftsv(open("/home/flatberg/datasets/smokers/full/Smokers.ftsv"))
DY = dataset.read_ftsv(open("../../data/smokers-full/Yg.ftsv")) DY = dataset.read_ftsv(open("/home/flatberg/datasets/smokers/full/Yg.ftsv"))
Y = DY.asarray().astype('d') DYr = dataset.read_ftsv(open("/home/flatberg/datasets/smokers/full/Ypy.ftsv"))
Y = DYr.asarray().astype('d')
gene_ids = DX.get_identifiers('gene_ids', sorted=True) gene_ids = DX.get_identifiers('gene_ids', sorted=True)
sample_ids = DY.get_identifiers('_patient', sorted=True)
elif use_data=='scherf': elif use_data=='scherf':
DX = dataset.read_ftsv(open("../../data/scherf/scherfX.ftsv")) print "hepp"
DY = dataset.read_ftsv(open("../../data/scherf/scherfY.ftsv")) #DX = dataset.read_ftsv(open("../../data/scherf/old_data/scherfX.ftsv"))
Yg = DY.asarray().astype('d') #DY = dataset.read_ftsv(open("../../data/scherf/old_data/scherfY.ftsv"))
DX = dataset.read_ftsv(open("nci60/X5964.ftsv", "r"))
DYg = dataset.read_ftsv(open("../../data/uma/Yg133.ftsv"))
DYr = dataset.read_ftsv(open("../../data/uma/Yd.ftsv"))
Y = DYg.asarray().astype('d')
DY = DYg.copy()
Yg = Y
Yr = DYr.asarray().astype('d')
X = DX.asarray()
gene_ids = DX.get_identifiers('gene_ids', sorted=True) gene_ids = DX.get_identifiers('gene_ids', sorted=True)
sample_ids = DY.get_identifiers('cline', sorted=True)
elif use_data=='staunton': elif use_data=='staunton':
pass pass
elif use_data=='uma':
DX = dataset.read_ftsv(open("../../data/uma/X133.ftsv"))
DYg = dataset.read_ftsv(open("../../data/uma/Yg133.ftsv"))
DY = dataset.read_ftsv(open("../../data/uma/Yd.ftsv"))
Y = DY.asarray().astype('d')
Yg = DYg.asarray().astype('d')
gene_ids = DX.get_identifiers('gene_ids', sorted=True)
# use subset with defined GO-terms elif use_data=='uma':
DX = dataset.read_ftsv(open("/home/flatberg/datasets/uma/X133.ftsv"))
DYg = dataset.read_ftsv(open("/home/flatberg/datasets/uma/Yg133.ftsv"))
DYr = dataset.read_ftsv(open("/home/flatberg/datasets/uma/Yd.ftsv"))
X = DX.asarray()
Y = DYg.asarray().astype('d')
DY = DYg.copy()
Yg = Y
Yr = DYr.asarray().astype('d')
gene_ids = DX.get_identifiers('gene_ids', sorted=True)
sample_ids = DY.get_identifiers('cline', sorted=True)
else:
print "use_data argument: (%s) not valid" %use_method
if use_sbg_subset and use_data in ['uma', 'scherf', 'staunton']:
print "Using sbg subset of cancers"
Y = Yg
Y_old = Y.copy()
Yr_old = Yr.copy()
X_old = X.copy()
keep_samples = ['CN', 'ME', 'LE', 'CO', 'RE']
#keep_samples = ['CN', 'ME', 'LE', 'CO', 'RE']
sample_ids_original = DY.get_identifiers('cline', sorted=True)
sample_ids= [i for i in sample_ids if i[:2] in keep_samples]
rows_ind = [i for i,name in enumerate(sample_ids_original) if name[:2] in keep_samples]
# take out rows in X,Y
X = X[rows_ind,:]
Y = Y[rows_ind,:]
Yr = Yr[rows_ind,:]
# identify redundant columns in Y
cols_ind = where(Y.sum(0)>1)[0]
Y = Y[:, cols_ind]
# create new datasets with updated idents
cat_ids = [name for i,name in enumerate(DYg.get_identifiers('_cancer', sorted=True)) if i in cols_ind]
DX = dataset.Dataset(X, [['cline', sample_ids], ['gene_ids', gene_ids]], name='Dxr')
DYg = dataset.CategoryDataset(Y, [['cline', sample_ids], ['_cancer', cat_ids]], name='Dyr')
DYr = dataset.Dataset(Yr, [['cline', sample_ids], ['_time', ['doubling_time']]], name='Dyrr')
DY_old = DY.copy()
DY = DYg
print "Now there are %d samples in X" %X.shape[0]
# use subset of genes with defined GO-terms
ic_all = 2026006.0 # sum of all ic in BP ic_all = 2026006.0 # sum of all ic in BP
max_ic = -log(1/ic_all) max_ic = -log(1/ic_all)
ic_cutoff = -log(min_genes/ic_all)/max_ic ic_cutoff = -log(min_genes/ic_all)/max_ic
@ -99,34 +243,67 @@ print "\n\nFiltering genes by Go terms "
# use subset based on SAM,PLSR or (IQR) # use subset based on SAM,PLSR or (IQR)
if subset=='sam': if subset=='plsr':
# select subset genes by SAM print "plsr filter on genes"
rpy.r.library("siggenes") if use_saved_plsr_result:
rpy.r.library("qvalue") index = cPickle.load(open('plsr_index.pkl'))
rpy.r.assign("data", X.T) # Subset data
cl = dot(DYg.asarray(), diag(arange(Yg.shape[1])+1)).sum(1) X = X[:,index]
rpy.r.assign("cl", cl)
rpy.r.assign("B", 20) gene_ids = [gid for i, gid in enumerate(gene_ids) if i in index]
# Perform a SAM analysis. print "\nNumber of genes: %s" %len(gene_ids)
print "Starting SAM" print "\nWorking on subset with %s genes " %len(gene_ids)
sam = rpy.r('sam.out<-sam(data=data,cl=cl,B=B,rand=123)')
print "SAM done" # update valid go-terms
# Compute the q-values of the genes. gene2goterms = rpy_go.goterms_from_gene(gene_ids, ic_cutoff=ic_cutoff)
qq = rpy.r('qobj<-qvalue(sam.out@p.value)') all_terms = set()
qvals = asarray(qq['qvalues']) for t in gene2goterms.values():
# cut off all_terms.update(t)
cutoff = 0.001 terms = list(all_terms)
index = where(qvals<cutoff)[0] print "\nNumber of go-terms: %s" %len(terms)
if small_test: # update genelist
index = index[:20] gene_ids = gene2goterms.keys()
else:
# Subset data
print "Initial plsr qvals"
xcal_tsq_x, xpert_tsq_x = pyblm.pls_qvals(X, Y, aopt=aopt, n_iter=n_iter, center_axis=[0,0], nsets=None)
qvals = pyblm.statistics._fdr(xcal_tsq_x, xpert_tsq_x, median)
# cut off
#sort_index = qvals.argsort()
#index = sort_index[:800]
#qval_cutoff = qvals[sort_index[500]]
print "Using cuf off: %.2f" %qval_cutoff
index = where(qvals<qval_cutoff)[0]
if small_test:
index = index[:20]
# Subset data
X = X[:,index]
gene_ids = [gid for i, gid in enumerate(gene_ids) if i in index]
print "\nNumber of genes: %s" %len(gene_ids)
print "\nWorking on subset with %s genes " %len(gene_ids)
# update valid go-terms
gene2goterms = rpy_go.goterms_from_gene(gene_ids, ic_cutoff=ic_cutoff)
all_terms = set()
for t in gene2goterms.values():
all_terms.update(t)
terms = list(all_terms)
print "\nNumber of go-terms: %s" %len(terms)
# update genelist
gene_ids = gene2goterms.keys()
print "\nNumber of genes: %s" %len(gene_ids)
elif subset == 'iqr':
iqr_vals = iqr(X)
index = where(iqr_vals>1)[0]
X = X[:,index] X = X[:,index]
gene_ids = [gid for i, gid in enumerate(gene_ids) if i in index] gene_ids = [gid for i, gid in enumerate(gene_ids) if i in index]
print "\nNumber of genes: %s" %len(gene_ids) print "\nNumber of genes: %s" %len(gene_ids)
print "\nWorking on subset with %s genes " %len(gene_ids) print "\nWorking on subset with %s genes " %len(gene_ids)
# update valid go-terms # update valid go-terms
gene2goterms = rpy_go.goterms_from_gene(gene_ids, ic_cutoff=ic_cutoff) gene2goterms = rpy_go.goterms_from_gene(gene_ids, ic_cutoff=ic_cutoff)
all_terms = set() all_terms = set()
@ -136,12 +313,10 @@ if subset=='sam':
print "\nNumber of go-terms: %s" %len(terms) print "\nNumber of go-terms: %s" %len(terms)
# update genelist # update genelist
gene_ids = gene2goterms.keys() gene_ids = gene2goterms.keys()
print "\nNumber of genes: %s" %len(gene_ids)
elif subset=='plsr':
cx_stats.pls_qvals(X, Y)
else: else:
# noimp (smoker data is prefiltered) # noimp (smoker data is prefiltered)
pass print "No prefiltering on data used"
pass
rpy.r.library("GOSim") rpy.r.library("GOSim")
@ -153,41 +328,92 @@ print "\nCalculating term-term similarity matrix"
if meth=="CoutoEnriched": if meth=="CoutoEnriched":
aa = 0 aa = 0
ba = 0 ba = 0
rpy.r.setEnrichmentFactors(alpha = aa, beta =ba) rpy.r.setEnrichmentFactors(alpha = aa, beta =ba)
rpytmat = rpy.with_mode(rpy.NO_CONVERSION, rpy.r.getTermSim)(terms, method=meth,verbose=False) if not data_cached:
tmat = rpy.r.assign("haha", rpytmat) rpytmat = rpy.with_mode(rpy.NO_CONVERSION, rpy.r.getTermSim)(terms, method=meth,verbose=False)
print "\n Calculating Z matrix" tmat = rpy.r.assign("haha", rpytmat)
Z = rpy_go.genego_sim(gene2goterms,gene_ids,terms,rpytmat,go_term_sim=go_term_sim,term_sim=meth) print "\n Calculating Z matrix"
Z = rpy_go.genego_sim(gene2goterms,gene_ids,terms,rpytmat,go_term_sim=go_term_sim,term_sim=meth)
# update data (X) matrix DZ = dataset.Dataset(Z, [['go-terms', terms], ['gene_ids', gene_ids]], name='Dz_'+str(meth))
newind = DX.get_indices('gene_ids', gene_ids) # update data (X) matrix
Xr = DX.asarray()[:,newind] newind = DX.get_indices('gene_ids', gene_ids)
Xr = DX.asarray()[:,newind]
DXr = dataset.Dataset(Xr, [['cline', sample_ids], ['gene_ids', gene_ids]], name='Dxr')
######## LPLSR ######## else:
print "LPLSR ..." #DXr = dataset.read_ftsv(open('Xr.ftsv', 'r'))
Y = Yg newind = DX.get_indices('gene_ids', gene_ids)
Xr = DX.asarray()[:,newind]
if use_sbg_subset: DXr = dataset.Dataset(Xr, [['cline', sample_ids], ['gene_ids', gene_ids]], name='Dxr')
Y_old = Y.copy() DY = dataset.read_ftsv(open('Y.ftsv', 'r'))
Xr_old = Xr.copy() DZ = dataset.read_ftsv(open('Z.ftsv', 'r'))
keep_samples = ['CN', 'ME', 'LE', 'CO', 'RE'] Xr = DXr.asarray()
sample_ids = DY.get_identifiers('cline', sorted=True) Y = DY.asarray()
keep_ind = [i for i,name in enumerate(sample_ids) if name[:2] in keep_samples] Z = DZ.asarray()
Xr = Xr[keep_ind,:] sample_ids = DX.get_identifiers('cline', sorted=True)
Y = Y[keep_ind,:]
Y = Y[:, where(Y.sum(0)>1)[0]]
# standardize Z? # standardize Z?
sdtz = False sdtz = False
if sdtz: if sdtz:
Z = Z/Z.std(0) DZ._array = DZ._array/Dz._array.std(0)
sdty = False
sdty = True
if sdty: if sdty:
Y = Y/Y.std(0) DY._array = DY._array/DY._array.std(0)
lpls_result = nipals_lpls(Xr,Y,Z, a_max,alpha=xz_alpha,mean_ctr=mean_ctr)
# ##### PLS ONLY, CHECK FOR SIMILARITY BETWEEN W and Z #######
if bevel_check:
Xr = DXr.asarray()
Y = DY.asarray()
from pylab import figure, scatter, xlabel, subplot,xticks,yticks
Xrcc = Xr - Xr.mean(0) - Xr.mean(1)[:,newaxis] + Xr.mean()
Zcc = Z - Z.mean(0) - Z.mean(1)[:,newaxis] + Z.mean()
Yc = Y - Y.mean(0)
xy_pls_result = pls(Xrcc, Yc, a_max)
xz_pls_result = pls(Xrcc.T, Zcc.T, a_max)
# check for linearity between scores of xz-result and W of xy-result
Wxy = xy_pls_result['W']
Txz = xz_pls_result['T']
figure()
n = 0
for i in range(a_max):
w = Wxy[:,i]
for j in range(a_max):
n += 1
t = Txz[:,j]
r2 = stats.corrcoef(w, t)[0,-1]
subplot(a_max, a_max, n)
scatter(w, t)
xticks([])
yticks([])
xlabel('(Wxy(%d), Tzx(%d)), r2: %.1f ' %(i+1,j+1,r2))
# ####### LPLSR ########
if save_calc and not data_cached:
print "Saving calculations"
import cPickle
fh = open("g2go_s.pkl", "w")
cPickle.dump(gene2goterms, fh)
fh.close()
dataset.write_ftsv(open('Xs.ftsv', 'w'), DXr, decimals=7)
dataset.write_ftsv(open('Ysg.ftsv', 'w'), DY, decimals=7)
dataset.write_ftsv(open('Yspy.ftsv', 'w'), DYr, decimals=7)
dataset.write_ftsv(open('Zs.ftsv', 'w'), DZ, decimals=7)
def read_calc():
import cPickle
fh = open("g2go_s.pkl")
gene2goterms = cPickle.load(fh)
fh.close()
DXr = dataset.read_ftsv('Xu.ftsv')
DY = dataset.read_ftsv('Yu.ftsv')
DYr = dataset.read_ftsv('Ydu.ftsv')
DZ = dataset.read_ftsv('Zu.ftsv')
return DXr, DY, DYr, DZ, gene2goterms
print "LPLSR ..."
lpls_result = nipals_lpls(Xr,Y,Z, a_max,alpha=xz_alpha, center_axis=center_axis, zorth=zorth)
globals().update(lpls_result) globals().update(lpls_result)
# Correlation loadings # Correlation loadings
@ -197,46 +423,75 @@ cadz,Rz,rssz = correlation_loadings(Z.T, W, L)
# Prediction error # Prediction error
if calc_rmsep: if calc_rmsep:
rmsep , yhat, class_error = lpls_val(Xr, Y, Z, a_max, alpha=xz_alpha,mean_ctr=mean_ctr) rmsep , yhat, class_error = pyblm.crossvalidation.lpls_val(Xr, Y, Z, a_max, alpha=xz_alpha,center_axis=center_axis, nsets=nsets,zorth=zorth)
Alpha = arange(0.0, 1.01, .05)
if alpha_check: if alpha_check:
Alpha = arange(0.01, 1, .1)
Rmsep,Yhat, CE = [],[],[] Rmsep,Yhat, CE = [],[],[]
for a in Alpha: for a in Alpha:
print "alpha %f" %a print "alpha %f" %a
rmsep , yhat, ce = lpls_val(Xr, Y, Z, a_max, alpha=a,mean_ctr=mean_ctr,nsets=nsets) rmsep_a , yhat, ce = pyblm.lpls_val(Xr, Y, Z, a_max, alpha=a,
Rmsep.append(rmsep.copy()) center_axis=center_axis,nsets=nsets,
#Yhat.append(yhat.copy()) zorth=zorth)
#CE.append(ce.copy()) Rmsep.append(rmsep_a.copy())
Yhat.append(yhat.copy())
CE.append(ce.copy())
Rmsep = asarray(Rmsep) Rmsep = asarray(Rmsep)
#Yhat = asarray(Yhat) Yhat = asarray(Yhat)
#CE = asarray(CE) #CE = asarray(CE)
random_alpha_check = True
if random_alpha_check:
n_zrand = 100
RMS,YHAT, CEE = [],[],[]
zindex = arange(Z.shape[1])
for ii in range(n_zrand):
zind_rand = zindex.copy()
random.shuffle(zind_rand)
Zrand = Z[:,zind_rand]
#Alpha = arange(0.0, 1.1, .25)
Rmsep_r,Yhat_r, CE_r = [],[],[]
for a in Alpha:
print "Iter: %d alpha %.2f" %(ii, a)
rmsep , yhat, ce = pyblm.lpls_val(Xr, Y, Zrand, a_max, alpha=a,center_axis=center_axis,nsets=nsets, zorth=zorth)
Rmsep_r.append(rmsep.copy())
Yhat_r.append(yhat.copy())
CE_r.append(ce.copy())
RMS.append(Rmsep_r)
YHAT.append(Yhat_r)
CEE.append(CE_r)
RMS = asarray(RMS)
YHAT = asarray(YHAT)
CEE = asarray(CEE)
# Significance Hotellings T # Significance Hotellings T
#Wx, Wz = lpls_jk(Xr, Y, Z, aopt, mean_ctr=mean_ctr, xz_alpha=xz_alpha, nsets=nsets) calc_qvals = True
#Ws = W*apply_along_axis(norm, 0, T) if not calc_qvals:
#tsqx = cx_stats.hotelling(Wx, Ws[:,:aopt], alpha=w_alpha) Wx, Wz = pyblm.crossvalidation.lpls_jk(Xr, Y, Z, aopt, center_axis=center_axis, xz_alpha=xz_alpha, nsets=nsets)
#tsqz = cx_stats.hotelling(Wz, L[:,:aopt], alpha=0) Ws = W*apply_along_axis(norm, 0, T)
Ws = Ws[:,:aopt]
cal_tsq_x = pyblm.statistics.hotelling(Wx, Ws[:,:aopt], alpha=w_alpha)
Ls = L*apply_along_axis(norm, 0, K)
cal_tsq_z = pyblm.statistics.hotelling(Wz, Ls[:,:aopt], alpha=0.01)
# qvals # qvals
cal_tsq_z, pert_tsq_z, cal_tsq_x, pert_tsq_x = cx_stats.lpls_qvals(Xr, Y, Z, aopt=aopt, zx_alpha=xz_alpha, n_iter=n_iter)
qvalz = cx_stats.fdr(cal_tsq_z, pert_tsq_z, 'median') if calc_qvals:
qvalx = cx_stats.fdr(cal_tsq_x, pert_tsq_x, 'median') cal_tsq_z, pert_tsq_z, cal_tsq_x, pert_tsq_x = pyblm.lpls_qvals(Xr, Y, Z, aopt=aopt, zx_alpha=xz_alpha, n_iter=n_iter, nsets=nsets)
qvalz = pyblm.statistics._fdr(cal_tsq_z, pert_tsq_z, median)
qvalx = pyblm.statistics._fdr(cal_tsq_x, pert_tsq_x, median)
# p-values, set-enrichment analysis # p-values, set-enrichment analysis
active_genes_ids = where(qvalx < qval_cutoff)[0] active_genes_ids = where(qvalx < qval_cutoff)[0]
active_genes = [name for i,name in enumerate(gene_ids) if i in active_genes_ids] active_genes = [name for i,name in enumerate(gene_ids) if i in active_genes_ids]
active_universe = gene_ids active_universe = gene_ids
gsea_result, gsea_params= rpy_go.gene_GO_hypergeo_test(genelist=active_genes,universe=active_universe,chip=chip,pval_cutoff=1.0,cond=False,test_direction="over") gsea_result, gsea_params= rpy_go.gene_GO_hypergeo_test(genelist=active_genes,universe=active_universe,chip=chip,pval_cutoff=1.0,cond=False,test_direction="over")
active_goterms_ids = where(qvalz < qval_cutoff)[0] active_goterms_ids = where(qvalz < qval_cutoff)[0]
active_goterms = [name for i,name in enumerate(terms) if i in active_goterms_ids] active_goterms = [name for i,name in enumerate(terms) if i in active_goterms_ids]
gsea_t2p = dict(zip(gsea_result['GOBPID'], gsea_result['Pvalue'])) gsea_t2p = dict(zip(gsea_result['GOBPID'], gsea_result['Pvalue']))
@ -247,22 +502,35 @@ from scipy import where
dg = plots_lpls.dag(terms, "bp") dg = plots_lpls.dag(terms, "bp")
pos = None pos = None
figure(300) if calc_qvals:
subplot(2,1,1) figure(300)
pos = plots_lpls.plot_dag(dg, node_color=cal_tsq_z, pos=pos, nodelist=terms) subplot(2,1,1)
subplot(2,1,2) pos = plots_lpls.plot_dag(dg, node_color=cal_tsq_z, pos=pos, nodelist=terms)
pos = plot_dag(dg, node_color=qvalz, pos=pos, nodelist=terms) ax = gca()
colorbar(ax.collections[0])
xlabel('q values')
xticks([])
yticks([])
subplot(2,1,2)
pos = plot_dag(dg, node_color=qvalz, pos=pos, nodelist=terms)
ax = gca()
colorbar(ax.collections[0])
xlabel('T2 values')
else:
figure(300)
subplot(2,1,1)
pos = plots_lpls.plot_dag(dg, pos=pos, nodelist=terms)
if calc_rmsep: if calc_rmsep:
figure(1) #rmsep figure(190) #rmsep
bar_w = .2
bar_col = 'rgb'*5 bar_col = 'rgbcmyk'*2
m = Y.shape[1] m = Y.shape[1]
bar_w = 1./(m + 2.)
for a in range(m): for a in range(m):
bar(arange(a_max)+a*bar_w+.1, rmsep[:,a], width=bar_w, color=bar_col[a]) bar(arange(a_max)+a*bar_w+.1, rmsep[a,:], width=bar_w, color=bar_col[a])
ylim([rmsep.min()-.05, rmsep.max()+.05]) ylim([rmsep.min()-.05, rmsep.max()+.05])
title('RMSEP: Y(%s)' %Y.get_name()) title('RMSEP: Y(%s)' %DY.get_name())
#figure(2) #figure(2)
#for a in range(m): #for a in range(m):
@ -270,26 +538,28 @@ if calc_rmsep:
#ylim([class_error.min()-.05, class_error.max()+.05]) #ylim([class_error.min()-.05, class_error.max()+.05])
#title('Classification accuracy') #title('Classification accuracy')
figure(3) # Hyploid correlations figure(5) # Hyploid correlations
pc1 = 2
pc2 = 3
tsqz = cal_tsq_z tsqz = cal_tsq_z
tsqx = cal_tsq_x tsqx = cal_tsq_x
tsqz_s = 250*tsqz/tsqz.max() tsqz_s = 550*tsqz/tsqz.max()
td = rpy_go.goterm2desc(terms) td = rpy_go.goterm2desc(terms)
tlabels = [td[i] for i in terms] tlabels = [td[i] for i in terms]
keep = where(qvalz<0.01)[0] #keep = tsqz.argsort()[:100]
k_Rz = Rz[keep,:] #k_Rz = Rz[keep,:]
k_tsqz_s = tsqz_s[keep] #k_tsqz_s = tsqz_s[keep]
k_tsq = tsqz[keep] #k_tsq = tsqz[keep]
k_tlabels = [name for i,name in enumerate(tlabels) if i in keep] #k_tlabels = [name for i,name in enumerate(tlabels) if i in keep]
plot_corrloads(Rz, pc1=0, pc2=1, s=tsqz_s, c=tsqz, zorder=5, expvar=evz, ax=None,alpha=.5,labels=None) plot_corrloads(Rz, pc1=pc1, pc2=pc2, s=tsqz_s, c=tsqz, zorder=6, expvar=evz, ax=None,alpha=.9,labels=None)
#plot_corrloads(k_Rz, pc1=0, pc2=1, s=k_tsqz_s, c=k_tsqz, zorder=5, expvar=evz, ax=None,alpha=.5,labels=None) #plot_corrloads(k_Rz, pc1=0, pc2=1, s=k_tsqz_s, c=k_tsqz, zorder=5, expvar=evz, ax=None,alpha=.5,labels=None)
ax = gca() ax = gca()
yglabels = DYg.get_identifiers(DYg.get_dim_name()[1], sorted=True) ylabels = DYg.get_identifiers(DYg.get_dim_name()[1], sorted=True)
ylabels = DY.get_identifiers(DY.get_dim_name()[1], sorted=True) #ylabels = DYr.get_identifiers(DYr.get_dim_name()[1], sorted=True)
blabels = yglabels[:] #blabels = yglabels[:]
blabels.append(ylabels[0]) #blabels.append(ylabels[0])
plot_corrloads(Ry, pc1=0, pc2=1, s=150, c='g', marker='s', zorder=5, expvar=evy, ax=ax,labels=None,alpha=.9) plot_corrloads(Ry, pc1=pc1, pc2=pc2, s=350, c='g', marker='s', zorder=7, expvar=evy, ax=ax,labels=ylabels,alpha=1.0, drawback=False)
plot_corrloads(Rx, pc1=0, pc2=1, s=5, c='k', zorder=1, expvar=evx, ax=ax) plot_corrloads(Rx, pc1=pc1, pc2=pc2, s=3, c=(.6,.6,.6), alpha=1, zorder=4, expvar=evx, ax=ax, drawback=False, faceted=False)
figure(4) figure(4)
@ -299,7 +569,7 @@ plot_corrloads(Rx, pc1=0, pc2=1, s=tsqx/2.0, c='b', zorder=5, expvar=evx, ax=ax)
# title('X correlation') # title('X correlation')
subplot(222) subplot(222)
ax = gca() ax = gca()
plot_corrloads(Ry, pc1=0, pc2=1, s=150, c='g', zorder=5, expvar=evy, ax=ax) plot_corrloads(Ry, pc1=0, pc2=1, s=250, c='g', zorder=5, expvar=evy, ax=ax)
#title('Y correlation') #title('Y correlation')
subplot(223) subplot(223)
ax = gca() ax = gca()
@ -312,4 +582,73 @@ plot(evz, 'r', label='Z', linewidth=2)
legend(loc=2) legend(loc=2)
ylabel('Explained variance') ylabel('Explained variance')
xlabel('Component') xlabel('Component')
xticks((arange(len(evx))), [str(int(i+1)) for i in arange(len(evx))])
show() show()
figure(19)
#subplot(1,2,1)
# RMS : (n_rand_iter, n_alpha, nvarY, a_max)
# Rmsep : (n_alpha, nvarY, a_max)
rms = RMS[:,:,:,aopt] # looking at solution at aopt
m_rms = rms.mean(2) # mean over all y-variables
mm_rms = m_rms.mean(0) # mean over iterations
std_mrms = m_rms.std(0) # standard deviation over iterations
rms_t = Rmsep[:,:,aopt]
m_rms_t = rms_t.mean(1)
xax = arange(mm_rms.shape[0])
std2_lim_down = mm_rms - 1.*std_mrms
std2_lim_up = mm_rms + 1.*std_mrms
xx = r_[xax, xax[::-1]]
yy = r_[std2_lim_down, std2_lim_up[::-1]]
fill(xx, yy, fc='.9')
plot(mm_rms, '--r', lw=1.5, label='Perm. mean')
plot(std2_lim_down, 'b--')
plot(std2_lim_up, 'b--', label='Perm. 2*std')
plot(m_rms_t, 'g', lw=1.5, label='True')
#c_ylim = ylim()
#ylim(c_ylim[0], c_ylim[1]-1)
alpha_ind = linspace(0, Alpha.shape[0]-1, 11)
xticks(alpha_ind, ['%.1f' %a for a in arange(0,1.01, .1)])
xlabel(r'$\alpha$')
ylabel('mean error')
leg = legend(loc=2)
# delete fill from legend
del leg.texts[-1]
del leg.legendHandles[-1]
# delete one of the std legends
del leg.texts[1]
del leg.legendHandles[1]
klass = True
if klass:
figure(20)
# subplot(1,2,1)
# RMS : (n_rand_iter, n_alpha, nvarY, a_max)
# Rmsep : (n_alpha, nvarY, a_max)
cee = CEE[:,:,aopt,:] # looking at solution at aopt
m_cee = cee.mean(-1) # mean over all y-variables
mm_cee = m_cee.mean(0) # mean over iterations
std_cee = m_cee.std(0) # standard deviation over iterations
CE = asarray(CE)
cee_t = CE[:,:,aopt]
m_cee_t = cee_t.mean(1)
xax = arange(mm_cee.shape[0])
std2_lim_down = mm_cee - 2*std_cee
std2_lim_up = mm_cee + 2*std_cee
xx = r_[xax, xax[::-1]]
yy = r_[std2_lim_down, std2_lim_up[::-1]]
fill(xx, yy, fc='.9')
plot(mm_cee, '--r', lw=1.5)
plot(std2_lim_down, 'b--')
plot(std2_lim_up, 'b--')
plot(m_cee_t, 'g', lw=1.5)
c_ylim = ylim()
ylim = ylim(c_ylim[0], .2)
xticks(xax, [str(a)[:3] for a in Alpha])
xlabel(r'$\alpha$')
ylabel('mean error')