Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0

Trying to fix cv_pls

This commit is contained in:
Arnar Flatberg 2007-07-30 09:46:43 +00:00
parent 9ccdf97d07
commit b39e71ca2b
3 changed files with 139 additions and 59 deletions

View File

@ -13,9 +13,8 @@ try:
from symeig import symeig
except:
has_sym = False
has_sym=False
def pca(a, aopt,scale='scores',mode='normal',center_axis=-1):
def pca(a, aopt,scale='scores',mode='normal',center_axis=0):
""" Principal Component Analysis.
Performs PCA on given matrix and returns results in a dictionary.
@ -26,7 +25,7 @@ def pca(a, aopt,scale='scores',mode='normal',center_axis=-1):
aopt : int
Number of components to use, aopt<=min(samples, variables)
:Returns:
:Returns:
results : dict
keys -- values, T -- scores, P -- loadings, E -- residuals,
lev --leverages, ssq -- sum of squares, expvar -- cumulative
@ -42,14 +41,15 @@ def pca(a, aopt,scale='scores',mode='normal',center_axis=-1):
- pcr : other blm
- pls : other blm
- lpls : other blm
Notes
-----
Uses kernel speed-up if m>>n or m<<n.
If residuals turn rank deficient, a lower number of component than given
in input will be used. The number of components used is given in results-dict.
in input will be used. The number of components used is given in
results-dict.
Examples
--------
@ -57,7 +57,7 @@ def pca(a, aopt,scale='scores',mode='normal',center_axis=-1):
>>> import scipy,engines
>>> a=scipy.asarray([[1,2,3],[2,4,5]])
>>> dat=engines.pca(a, 2)
>>> dat['expvar']
>>> dat['expvarx']
array([0.,99.8561562, 100.])
"""
@ -76,7 +76,6 @@ def pca(a, aopt,scale='scores',mode='normal',center_axis=-1):
aopt = minimum(aopt, eff_rank)
T = u*s
s = s[:aopt]
e = e[:aopt]
T = T[:,:aopt]
P = v[:,:aopt]
@ -91,7 +90,6 @@ def pca(a, aopt,scale='scores',mode='normal',center_axis=-1):
E = empty((aopt, m, n))
ssq = []
lev = []
expvarx = empty((aopt, aopt+1))
for ai in range(aopt):
E[ai,:,:] = a - dot(T[:,:ai+1], P[:,:ai+1].T)
ssq.append([(E[ai,:,:]**2).sum(0), (E[ai,:,:]**2).sum(1)])
@ -99,9 +97,6 @@ def pca(a, aopt,scale='scores',mode='normal',center_axis=-1):
lev.append([((s*T)**2).sum(1), (P**2).sum(1)])
else:
lev.append([(T**2).sum(1), ((s*P)**2).sum(1)])
expvarx[ai,:] = r_[0, 100*e.cumsum()/e.sum()]
else:
# residuals
E = a - dot(T, P.T)
@ -112,9 +107,9 @@ def pca(a, aopt,scale='scores',mode='normal',center_axis=-1):
lev = [(1./m)+(T**2).sum(1), (1./n)+((P/s)**2).sum(1)]
else:
lev = [(1./m)+((T/s)**2).sum(1), (1./n)+(P**2).sum(1)]
# variances
expvarx = r_[0, 100*e.cumsum()/e.sum()]
# variances
expvarx = r_[0, 100*e.cumsum()/e.sum()][:aopt+1]
return {'T':T, 'P':P, 'E':E, 'expvarx':expvarx, 'levx':lev, 'ssqx':ssq, 'aopt':aopt}
def pcr(a, b, aopt, scale='scores',mode='normal',center_axis=0):
@ -130,7 +125,7 @@ def pcr(a, b, aopt, scale='scores',mode='normal',center_axis=0):
aopt : int
Number of components to use, aopt<=min(samples, variables)
:Returns:
:Returns:
results : dict
keys -- values, T -- scores, P -- loadings, E -- residuals,
levx -- leverages, ssqx -- sum of squares, expvarx -- cumulative
@ -143,7 +138,7 @@ def pcr(a, b, aopt, scale='scores',mode='normal',center_axis=0):
Center along given axis. If neg.: no centering (-inf,..., matrix modes)
:SeeAlso:
- pcr : other blm
- pca : other blm
- pls : other blm
- lpls : other blm
@ -161,8 +156,9 @@ def pcr(a, b, aopt, scale='scores',mode='normal',center_axis=0):
>>> import scipy,engines
>>> a=scipy.asarray([[1,2,3],[2,4,5]])
>>> dat=engines.pca(a, 2)
>>> dat['expvar']
>>> b=scipy.asarray([[1,1],[2,3]])
>>> dat=engines.pcr(a, 2)
>>> dat['expvarx']
array([0.,99.8561562, 100.])
"""
@ -171,12 +167,11 @@ def pcr(a, b, aopt, scale='scores',mode='normal',center_axis=0):
b = b - expand_dims(b.mean(center_axis), center_axis)
dat = pca(a, aopt=aopt, scale=scale, mode=mode, center_axis=center_axis)
T = dat['T']
weights = apply_along_axis(vnorm, 0, T)
weights = apply_along_axis(vnorm, 0, T)**2
if scale=='loads':
# fixme: check weights
Q = dot(b.T, T*weights**2)
Q = dot(b.T, T*weights)
else:
Q = dot(b.T, T/weights**2)
Q = dot(b.T, T/weights)
if mode=='fast':
dat.update({'Q':Q})
@ -187,43 +182,96 @@ def pcr(a, b, aopt, scale='scores',mode='normal',center_axis=0):
F[i,:,:] = b - dot(T[:,:i+1], Q[:,:i+1].T)
else:
F = b - dot(T, Q.T)
#fixme: explained variance in Y + Y-var leverages
dat.update({'Q':Q, 'F':F})
expvary = r_[0, 100*((T**2).sum(0)*(Q**2).sum(0)/(b**2).sum()).cumsum()[:aopt]]
#fixme: Y-var leverages
dat.update({'Q':Q, 'F':F, 'expvary':expvary})
return dat
def pls(a, b, aopt=2, scale='scores', mode='normal', ab=None):
def pls(a, b, aopt=2, scale='scores', mode='normal', ax_center=0, ab=None):
"""Partial Least Squares Regression.
Applies plsr to given matrices and returns results in a dictionary.
Performs PLS on given matrix and returns results in a dictionary.
:Parameters:
a : array
Data measurement matrix, (samples x variables)
b : array
Data response matrix, (samples x responses)
aopt : int
Number of components to use, aopt<=min(samples, variables)
:Returns:
results : dict
keys -- values, T -- scores, P -- loadings, E -- residuals,
levx -- leverages, ssqx -- sum of squares, expvarx -- cumulative
explained variance of descriptors, expvary -- cumulative explained
variance of responses, aopt -- number of components used
:OtherParameters:
mode : str
Amount of info retained, ('fast', 'normal', 'detailed')
center_axis : int
Center along given axis. If neg.: no centering (-inf,..., matrix modes)
:SeeAlso:
- pca : other blm
- pcr : other blm
- lpls : other blm
Notes
-----
Uses kernel speed-up if m>>n or m<<n.
If residuals turn rank deficient, a lower number of component than given
in input will be used. The number of components used is given in results-dict.
Examples
--------
>>> import scipy,engines
>>> a=scipy.asarray([[1,2,3],[2,4,5]])
>>> b=scipy.asarray([[1,1],[2,3]])
>>> dat=engines.pls(a, b, 2)
>>> dat['expvarx']
array([0.,99.8561562, 100.])
Fast pls for calibration. Only inefficient for many Y-vars.
"""
m, n = a.shape
m, n = m_shape(a)
if ab!=None:
mm, ll = m_shape(ab)
mm, l = m_shape(ab)
assert(m==mm)
else:
k, l = m_shape(b)
assert(m==mm)
assert(l==ll)
W = empty((n, aopt))
P = empty((n, aopt))
R = empty((n, aopt))
Q = empty((l, aopt))
T = empty((m, aopt))
B = empty((aopt, n, l))
if ab==None:
ab = dot(a.T, b)
for i in range(aopt):
if ab.shape[1]==1:
w = ab.reshape(n, l)
w = w/vnorm(w)
elif n<l:
if has_sym:
s, u = symeig(dot(ab.T, ab),range=[l,l],overwrite=True)
else:
u, s, vh = svd(dot(ab, ab.T))
w = u[:,0]
else:
u, s, vh = svd(dot(ab.T, ab))
w = dot(ab, u[:,:1])
w = w/vnorm(w)
if has_sym:
s, u = symeig(dot(ab.T, ab),range=[l,l],overwrite=True)
else:
u, s, vh = svd(dot(ab.T, ab))
w = dot(ab, u)
r = w.copy()
if i>0: # recursive estimate to
if i>0:
for j in range(0, i, 1):
r = r - dot(P[:,j].T, w)*R[:,j][:,newaxis]
t = dot(a, r)
@ -233,8 +281,6 @@ def pls(a, b, aopt=2, scale='scores', mode='normal', ab=None):
ab = ab - dot(p, q.T)*tt
T[:,i] = t.ravel()
W[:,i] = w.ravel()
P[:,i] = p.ravel()
R[:,i] = r.ravel()
if mode=='fast' and i==aopt-1:
if scale=='loads':
@ -243,6 +289,8 @@ def pls(a, b, aopt=2, scale='scores', mode='normal', ab=None):
W = W*tnorm
return {'T':T, 'W':W}
P[:,i] = p.ravel()
R[:,i] = r.ravel()
Q[:,i] = q.ravel()
B[i] = dot(R[:,:i+1], Q[:,:i+1].T)
@ -272,14 +320,14 @@ def w_simpls(aat, b, aopt):
"""
bb = b.copy()
m, m = aat.shape
U = empty((m, aopt))
U = empty((m, aopt)) # W
T = empty((m, aopt))
H = empty((m, aopt)) #just like W in simpls
PROJ = empty((m, aopt)) #just like R in simpls
H = empty((m, aopt)) # R
PROJ = empty((m, aopt)) # P?
for i in range(aopt):
u, s, vh = svd(dot(dot(b.T, aat), b), full_matrices=0)
u = dot(b, u[:,:1]) #y-factor scores
q, s, vh = svd(dot(dot(b.T, aat), b), full_matrices=0)
u = dot(b, q[:,:1]) #y-factor scores
U[:,i] = u.ravel()
t = dot(aat, u)
t = t/vnorm(t)
@ -293,6 +341,38 @@ def w_simpls(aat, b, aopt):
return {'T':T, 'U':U, 'Q':C, 'H':H}
def w_pls(aat, b, aopt):
""" Pls for wide matrices.
Fast pls for crossval, used in calc rmsep for wide X
There is no P or W. T is normalised
"""
bb = b.copy()
m, m = aat.shape
U = empty((m, aopt)) # W
T = empty((m, aopt))
R = empty((m, aopt)) # R
PROJ = empty((m, aopt)) # P?
for i in range(aopt):
if has_sym:
pass
else:
q, s, vh = svd(dot(dot(b.T, aat), b), full_matrices=0)
q = q[:,:1]
u = dot(b , q) #y-factor scores
U[:,i] = u.ravel()
t = dot(aat, u)
t = t/vnorm(t)
T[:,i] = t.ravel()
r = dot(aat, t) #score-weights
R[:,i] = r.ravel()
PROJ[:,: i+1] = dot(T[:,:i+1], inv(dot(T[:,:i+1].T, R[:,:i+1])) )
if i<aopt:
b = b - dot(PROJ[:,:i+1], dot(R[:,:i+1].T,b) )
C = dot(bb.T, T)
return {'T':T, 'U':U, 'Q':C, 'H':H}
def bridge(a, b, aopt, scale='scores', mode='normal', r=0):
"""Undeflated Ridged svd(X'Y)
"""

View File

@ -16,8 +16,9 @@ def w_pls_gen(aat,b,n_blocks=None,center=True,index_out=False):
Returns:
-- aat_in,aat_out,b_in,b_out,[out]
"""
m,n = aat.shape
m, n = aat.shape
index = randperm(m)
if n_blocks==None: n_blocks = m
nValuesInBlock = m/n_blocks
if n_blocks==m:
index = arange(m)
@ -31,7 +32,7 @@ def w_pls_gen(aat,b,n_blocks=None,center=True,index_out=False):
b_out = b[out,:]
if center:
aat_in, mn = outerprod_centering(aat_in)
aat_out = aat_out - mn
b_in = b_in - b_in.mean(0) # b_in + b_out/(b_in.shape[0])
if index_out:
yield aat_in,aat_out,b_in,b_out,out
else:
@ -217,7 +218,7 @@ def outerprod_centering(aat, ret_mn=True):
mn_a = h + h.T # beauty of broadcasting
aatc = aat - mn_a
if ret_mn:
return aatc, mn_a
return aatc, h
return aatc

View File

@ -61,7 +61,6 @@ def w_pls_cv_val(X, Y, amax, n_blocks=None, algo='simpls'):
V = w_pls_gen(XXt, Y, n_blocks=n_blocks, center=True)
for Din, Doi, Yin, Yout in V:
ym = -sum(Yout, 0)[newaxis]/(1.0*Yin.shape[0])
Yin = Yin - ym
PRESS[:,0] = PRESS[:,0] + ((Yout - ym)**2).sum(0)
if algo=='simpls':
dat = w_simpls(Din, Yin, amax)
@ -74,15 +73,14 @@ def w_pls_cv_val(X, Y, amax, n_blocks=None, algo='simpls'):
for j in range(l):
TQ = dot(That, triu(dot(Q[j,:][:,newaxis], ones((1,amax)))) )
E = Yout[:,j][:,newaxis] - TQ
E = E + sum(E, 0)/Din.shape[0]
E = E + sum(E, 0)/Din.shape[0]
PRESS[j,1:] = PRESS[j,1:] + sum(E**2, 0)
Yhat = Y - dot(That,Q.T)
rmsep = sqrt(PRESS/Y.shape[0])
aopt = find_aopt_from_sep(rmsep)
return rmsep, Yhat, aopt
#Yhat = Yin - dot(That,Q.T)
msep = PRESS/(Y.shape[0])
aopt = find_aopt_from_sep(msep)
return sqrt(msep)
def pls_val(X, Y, amax=2, n_blocks=10, algo='pls', metric=None):
k, l = m_shape(Y)
PRESS = zeros((l, amax+1), dtype='<f8')
EE = zeros((amax, k, l), dtype='<f8')
@ -105,9 +103,10 @@ def pls_val(X, Y, amax=2, n_blocks=10, algo='pls', metric=None):
EE[a,out,:] = E
PRESS[:,a+1] = PRESS[:,a+1] + sum(E**2,0)
rmsep = sqrt(PRESS/(k-1.))
aopt = find_aopt_from_sep(rmsep)
return rmsep, Yhat, aopt
#rmsep = sqrt(PRESS/(k-1.))
msep = PRESS
aopt = find_aopt_from_sep(msep)
return msep, Yhat, aopt
def lpls_val(X, Y, Z, a_max=2, nsets=None,alpha=.5):
"""Performs crossvalidation to get generalisation error in lpls"""
@ -270,7 +269,7 @@ def lpls_jk(X, Y, Z, a_max, nsets=None, alpha=.5):
def find_aopt_from_sep(sep, method='75perc'):
"""Returns an estimate of optimal number of components from rmsecv.
"""
sep = sep.copy()
if method=='vanilla':
# min rmsep
rmsecv = sqrt(sep.mean(0))
@ -282,7 +281,7 @@ def find_aopt_from_sep(sep, method='75perc'):
med = median(sep)
prc_75 = []
for col in sep.T:
col.sort()
col.sort() #this is inplace -> ruins sep, so we are doing a copy
prc_75.append(col[int(ind)])
prc_75 = array(prc_75)
for i in range(1, sep.shape[1], 1):