Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0

Initial import

This commit is contained in:
Arnar Flatberg 2007-07-20 09:36:26 +00:00
parent dd04e28a62
commit 7ee7aa968a
5 changed files with 742 additions and 0 deletions

409
scripts/lpls/lpls.py Normal file
View File

@ -0,0 +1,409 @@
import sys
from pylab import *
import matplotlib
from scipy import *
from scipy.linalg import inv,norm
sys.path.append("/home/flatberg/fluents/fluents/lib")
import select_generators
sys.path.remove("/home/flatberg/fluents/fluents/lib")
def nipals_lpls(X, Y, Z, a_max, alpha=.7, mean_ctr=[2, 0, 1], verbose=True):
""" L-shaped Partial Least Sqaures Regression by the nipals algorithm.
(X!Z)->Y
:input:
X : data matrix (m, n)
Y : data matrix (m, l)
Z : data matrix (n, o)
:output:
T : X-scores
W : X-weights/Z-weights
P : X-loadings
Q : Y-loadings
U : X-Y relation
L : Z-scores
K : Z-loads
B : Regression coefficients X->Y
b0: Regression coefficient intercept
evx : X-explained variance
evy : Y-explained variance
evz : Z-explained variance
:Notes:
"""
if mean_ctr:
xctr, yctr, zctr = mean_ctr
X, mnX = center(X, xctr)
Y, mnY = center(Y, xctr)
Z, mnZ = center(Z, zctr)
varX = pow(X, 2).sum()
varY = pow(Y, 2).sum()
varZ = pow(Z, 2).sum()
m, n = X.shape
k, l = Y.shape
u, o = Z.shape
# initialize
U = empty((k, a_max))
Q = empty((l, a_max))
T = empty((m, a_max))
W = empty((n, a_max))
P = empty((n, a_max))
K = empty((o, a_max))
L = empty((u, a_max))
B = empty((a_max, n, l))
b0 = empty((a_max, m, l))
var_x = empty((a_max,))
var_y = empty((a_max,))
var_z = empty((a_max,))
for a in range(a_max):
if verbose:
print "\n Working on comp. %s" %a
u = Y[:,:1]
diff = 1
MAX_ITER = 100
lim = 1e-7
niter = 0
while (diff>lim and niter<MAX_ITER):
niter += 1
u1 = u.copy()
w = dot(X.T, u)
w = w/sqrt(dot(w.T, w))
l = dot(Z, w)
k = dot(Z.T, l)
k = k/sqrt(dot(k.T, k))
w = alpha*k + (1-alpha)*w
w = w/sqrt(dot(w.T, w))
t = dot(X, w)
c = dot(Y.T, t)
c = c/sqrt(dot(c.T, c))
u = dot(Y, c)
diff = abs(u1 - u).max()
if verbose:
print "Converged after %s iterations" %niter
tt = dot(t.T, t)
p = dot(X.T, t)/tt
q = dot(Y.T, t)/tt
l = dot(Z, w)
U[:,a] = u.ravel()
W[:,a] = w.ravel()
P[:,a] = p.ravel()
T[:,a] = t.ravel()
Q[:,a] = q.ravel()
L[:,a] = l.ravel()
K[:,a] = k.ravel()
X = X - dot(t, p.T)
Y = Y - dot(t, q.T)
Z = (Z.T - dot(w, l.T)).T
var_x[a] = pow(X, 2).sum()
var_y[a] = pow(Y, 2).sum()
var_z[a] = pow(Z, 2).sum()
B[a] = dot(dot(W[:,:a+1], inv(dot(P[:,:a+1].T, W[:,:a+1]))), Q[:,:a+1].T)
b0[a] = mnY - dot(mnX, B[a])
# variance explained
evx = 100.0*(1 - var_x/varX)
evy = 100.0*(1 - var_y/varY)
evz = 100.0*(1 - var_z/varZ)
return T, W, P, Q, U, L, K, B, b0, evx, evy, evz
def svd_lpls(X, Y, Z, a_max, alpha=.7, mean_ctr=[2, 0, 1], verbose=True):
"""
NB: In the works ...
L-shaped Partial Least Sqaures Regression by the svd algorithm.
(X!Z)->Y
:input:
X : data matrix (m, n)
Y : data matrix (m, l)
Z : data matrix (n, o)
:output:
T : X-scores
W : X-weights/Z-weights
P : X-loadings
Q : Y-loadings
U : X-Y relation
L : Z-scores
K : Z-loads
B : Regression coefficients X->Y
b0: Regression coefficient intercept
evx : X-explained variance
evy : Y-explained variance
evz : Z-explained variance
:Notes:
Not quite there ,,,,,,,,,,,,,,
"""
if mean_ctr:
xctr, yctr, zctr = mean_ctr
X, mnX = center(X, xctr)
Y, mnY = center(Y, xctr)
Z, mnZ = center(Z, zctr)
varX = pow(X, 2).sum()
varY = pow(Y, 2).sum()
varZ = pow(Z, 2).sum()
m, n = X.shape
k, l = Y.shape
u, o = Z.shape
# initialize
U = empty((k, a_max))
Q = empty((l, a_max))
T = empty((m, a_max))
W = empty((n, a_max))
P = empty((n, a_max))
K = empty((o, a_max))
L = empty((u, a_max))
var_x = empty((a_max,))
var_y = empty((a_max,))
var_z = empty((a_max,))
for a in range(a_max):
if verbose:
print "\n Working on comp. %s" %a
xyz = dot(dot(Z,X.T),Y)
u,s,vt = linalg.svd(xyz, 0)
w = u[:,o]
t = dot(X, w)
tt = dot(t.T, t)
p = dot(X.T, t)/tt
q = dot(Y.T, t)/tt
l = dot(Z.T, w)
W[:,a] = w.ravel()
P[:,a] = p.ravel()
T[:,a] = t.ravel()
Q[:,a] = q.ravel()
L[:,a] = l.ravel()
K[:,a] = k.ravel()
X = X - dot(t, p.T)
Y = Y - dot(t, q.T)
Z = (Z.T - dot(w, l.T)).T
var_x[a] = pow(X, 2).sum()
var_y[a] = pow(Y, 2).sum()
var_z[a] = pow(Z, 2).sum()
B = dot(dot(W, inv(dot(P.T, W))), Q.T)
b0 = mnY - dot(mnX, B)
# variance explained
evx = 100.0*(1 - var_x/varX)
evy = 100.0*(1 - var_y/varY)
evz = 100.0*(1 - var_z/varZ)
return T, W, P, Q, U, L, K, B, b0, evx, evy, evz
def lplsr(X, Y, Z, a_max, mean_ctr=[2,0,1]):
""" Haralds LPLS.
"""
if mean_ctr!=None:
xctr, yctr, zctr = mean_ctr
X, mnX = center(X, xctr)
Y, mnY = center(Y, yctr)
Z, mnZ = center(Z, zctr)
varX = pow(X, 2).sum()
varY = pow(Y, 2).sum()
varZ = pow(Z, 2).sum()
m, n = X.shape
k, l = Y.shape
u, o = Z.shape
# initialize
Wy = empty((l, a_max))
Py = empty((l, a_max))
Ty = empty((m, a_max))
Tz = empty((o, a_max))
Wz = empty((u, a_max))
Pz = empty((u, a_max))
var_x = empty((a_max,))
var_y = empty((a_max,))
var_z = empty((a_max,))
# residuals
Ey = Y.copy()
Ez = Z.copy()
Ex = X.copy()
for i in range(a_max):
YtXZ = dot(Ey.T, dot(X, Ez.T))
U, S, V = linalg.svd(YtXZ)
wy = U[:,0]
print wy
wz = V[0,:]
ty = dot(Ey, wy)
tz = dot(Ez.T, wz)
py = dot(Ey.T, ty)/dot(ty.T,ty)
pz = dot(Ez, tz)/dot(tz.T,tz)
Wy[:,i] = wy
Wz[:,i] = wz
Ty[:,i] = ty
Tz[:,i] = tz
Py[:,i] = py
Pz[:,i] = pz
Ey = Ey - outer(ty, py.T)
Ez = (Ez.T - outer(tz, pz.T)).T
var_y[i] = pow(Ey, 2).sum()
var_z[i] = pow(Ez, 2).sum()
tyd = apply_along_axis(norm, 0, Ty)
tzd = apply_along_axis(norm, 0, Tz)
Tyu = Ty/tyd
Tzu = Tz/tzd
C = dot(dot(Tyu.T, X), Tzu)
for i in range(a_max):
Ex = Ex - dot(dot(Ty[:,:i+1],C[:i+1,:i+1]), Tz[:,:i+1].T)
var_x[i] = pow(Ex,2).sum()
# variance explained
print "var_x:"
print var_x
print "varX total:"
print varX
evx = 100.0*(1 - var_x/varX)
evy = 100.0*(1 - var_y/varY)
evz = 100.0*(1 - var_z/varZ)
return Ty, Tz, Wy, Wz, Py, Pz, C, Ey, Ez, Ex, evx, evy, evz
def bifpls(X, Y, Z, a_max, alpha):
"""Swedssihsh LPLS by nipals.
"""
u = X[:,0]
Ey = Y.copy()
Ez = Z.copy()
for i in range(100):
w = dot(X.T,u)
w = w/vnorm(w)
t = dot(X, w)
q = dot(Ey, t.T)/dot(t.T,t)
qnorm = vnorm(q)
q = q/qnorm
v = dot(Ez, q)
s = dot(Ez.T, v)/dot(v.T,v)
v = v*vnorm(s)
s = s/vnorm(s)
c = qnorm*(alpha*q + (1-alpha)*s)
u = dot(Ey, c)/dot(s.T,s)
p = dot(X.T, t)/dot(t.T,t)
v2 = dot(Ez, s)/dot(s.T,s)
Ey = Ey - dot(t, p.T)
Ez = Ez - dot(v2, c.T)
# variance explained
evx = 100.0*(1 - var_x/varX)
evy = 100.0*(1 - var_y/varY)
evz = 100.0*(1 - var_z/varZ)
def center(a, axis):
# 0 = col center, 1 = row center, 2 = double center
# -1 = nothing
if axis==-1:
return a
elif axis==0:
mn = a.mean(0)
return a - mn, mn
elif axis==1:
mn = a.mean(1)[:,newaxis]
return a - mn , mn
elif axis==2:
mn = a.mean(0) + a.mean(1)[:,newaxis] - a.mean()
return a - mn, mn
else:
raise IOError("input error: axis must be in [-1,0,1,2]")
def correlation_loadings(D, T, P, test=True):
""" Returns correlation loadings.
:input:
- D: [nsamps, nvars], data (non-centered data)
- T: [nsamps, a_max], Scores
- P: [nvars, a_max], Loadings
:ouput:
- Rloads: [nvars, a_max], Correlation loadings
- rmseVars: [nvars], scaling coeff. for each var in D
:notes:
- FIXME: Calculation is not valid .... using corrceof instead
"""
nsamps, nvars = D.shape
nsampsT, a_max = T.shape
nvarsP, a_maxP = P.shape
if nsamps!=nsampsT: raise IOError("D/T mismatch")
if a_max!=a_maxP: raise IOError("a_max mismatch")
if nvars!=nvarsP: raise IOError("D/P mismatch")
#init
Rloads = empty((nvars, a_max), 'd')
stdvar = stats.std(D, 0)
rmseVars = sqrt(nsamps-1)*stdvar
# center
D = D - D.mean(0)
TT = diag(dot(T.T, T))
sTT = sqrt(TT)
for a in range(a_max):
Rloads[:,a] = sTT[a]*P[:,a]/rmseVars
R = empty_like(Rloads)
for a in range(a_max):
for k in range(nvars):
r = corrcoef(D[:,k], T[:,a])
R[k,a] = r[0,1]
#Rloads = R
return Rloads, R, rmseVars
def cv_lpls(X, Y, Z, a_max=2, nsets=None,alpha=.5):
"""Performs crossvalidation to get generalisation error in lpls"""
cv_iter = select_generators.pls_gen(X, Y, n_blocks=nsets,center=True,index_out=True)
k, l = Y.shape
Yhat = empty((a_max,k,l), 'd')
for i, (xcal,xi,ycal,yi,ind) in enumerate(cv_iter):
T, W, P, Q, U, L, K, B, b0, evx, evy, evz = nipals_lpls(xcal,ycal,Z,
a_max=a_max,
alpha=alpha,
mean_ctr=[0,0,1],
verbose=False)
for a in range(a_max):
Yhat[a,ind,:] = b0[a][0][0] + dot(xi, B[a])
Yhat_class = zeros_like(Yhat)
for a in range(a_max):
for i in range(k):
Yhat_class[a,i,argmax(Yhat[a,i,:])]=1.0
class_err = 100*((Yhat_class+Y)==2).sum(1)/Y.sum(0).astype('d')
sep = (Y - Yhat)**2
rmsep = sqrt(sep.mean(1))
return rmsep, Yhat, class_err
def jk_lpls(X, Y, Z, a_max, nsets=None, alpha=.5):
cv_iter = select_generators.pls_gen(X, Y, n_blocks=nsets,center=True,index_out=False)
m, n = X.shape
k, l = Y.shape
o, p = Z.shape
if nsets==None:
nsets = m
WWx = empty((nsets, n, a_max), 'd')
WWz = empty((nsets, o, a_max), 'd')
WWy = empty((nsets, l, a_max), 'd')
for i, (xcal,xi,ycal,yi) in enumerate(cv_iter):
T, W, P, Q, U, L, K, B, b0, evx, evy, evz = nipals_lpls(xcal,ycal,Z,
a_max=a_max,
alpha=alpha,
mean_ctr=[0,0,1],
verbose=False)
WWx[i,:,:] = W
WWz[i,:,:] = L
WWy[i,:,:] = Q
print "Q"
print Q
return WWx, WWz, WWy

View File

@ -0,0 +1,38 @@
import pylab
import matplotlib
def plot_corrloads(R, pc1=0,pc2=1,s=20, c='b', zorder=5,expvar=None,ax=None,drawback=True, labels=None):
""" Correlation loading plot."""
# backgorund
if ax==None or drawback==True:
radius = 1
center = (0,0)
c100 = matplotlib.patches.Circle(center,radius=radius,
facecolor='gray',
alpha=.1,
zorder=1)
c50 = matplotlib.patches.Circle(center, radius=radius/2.0,
facecolor='gray',
alpha=.1,
zorder=2)
ax = pylab.gca()
ax.add_patch(c100)
ax.add_patch(c50)
ax.axhline(lw=1.5,color='k')
ax.axvline(lw=1.5,color='k')
# corrloads
ax.scatter(R[:,pc1], R[:,pc2], s=s, c=c,zorder=zorder)
ax.set_xlim([-1,1])
ax.set_ylim([-1,1])
if expvar!=None:
xstring = "Comp: %d expl.var: %.1f " %(pc1+1, expvar[pc1])
pylab.xlabel(xstring)
ystring = "Comp: %d expl.var.: %.1f " %(pc2+1, expvar[pc2])
pylab.ylabel(ystring)
if labels:
assert(len(labels)==R.shape[0])
for name, r in zip(labels, R):
ax.text(r[pc1], r[pc2], " " + name)
#pylab.show()

110
scripts/lpls/rpy_go.py Normal file
View File

@ -0,0 +1,110 @@
""" Module for Gene ontology related functions called in R"""
import scipy
import rpy
silent_eval = rpy.with_mode(rpy.NO_CONVERSION, rpy.r)
def get_term_sim(termlist, method = "JiangConrath", verbose=False):
"""Returns the similariy matrix between go-terms.
Arguments:
termlist: character vector of GO terms
method: one of
("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin")
verbose: print out various information or not
"""
_methods = ("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin")
assert(method in _methods)
assert(termlist[0][:2]=='GO')
rpy.r.library("GOSim")
return rpy.r.getTermSim(termlist, method = method, verbose = verbose)
def get_gene_sim(genelist, similarity='OA',
distance="Resnick"):
rpy.r.library("GOSim")
rpy.r.assign("ids", genelist)
silent_eval('a<-getGeneSim(ids)', verbose=FALSE)
def goterms_from_gene(genelist, ontology=['BP'], garbage = ['IEA', 'ISS', 'ND']):
""" Returns the go-terms from a specified genelist (Entrez id).
"""
rpy.r.library("GO")
_CODES = {"IMP" : "inferred from mutant phenotype",
"IGI" : "inferred from genetic interaction",
"IPI" :"inferred from physical interaction",
"ISS" : "inferred from sequence similarity",
"IDA" : "inferred from direct assay",
"IEP" : "inferred from expression pattern",
"IEA" : "inferred from electronic annotation",
"TAS" : "traceable author statement",
"NAS" : "non-traceable author statement",
"ND" : "no biological data available",
"IC" : "inferred by curator"
}
_ONTOLOGIES = ['BP', 'CC', 'MF']
assert(scipy.all([(code in _CODES) for code in garbage]))
assert(scipy.all([(ont in _ONTOLOGIES) for ont in ontology]))
goterms = {}
for gene in genelist:
goterms[gene] = []
info = rpy.r('GOENTREZID2GO[["' + str(gene) + '"]]')
#print info
if info:
for term, desc in info.items():
if desc['Ontology'] in ontology and desc['Evidence'] not in garbage:
goterms[gene].append(term)
return goterms
def genego_matrix(goterms, tmat, gene_ids, term_ids, func=min):
ngenes = len(gene_ids)
nterms = len(term_ids)
gene2indx = {}
for i,id in enumerate(gene_ids):
gene2indx[id]=i
term2indx = {}
for i,id in enumerate(term_ids):
term2indx[id]=i
#G = scipy.empty((nterms, ngenes),'d')
G = []
newindex = []
for gene, terms in goterms.items():
g_ind = gene2indx[gene]
if len(terms)>0:
t_ind = []
newindex.append(g_ind)
for term in terms:
if term2indx.has_key(term): t_ind.append(term2indx[term])
print t_ind
subsim = tmat[t_ind, :]
gene_vec = scipy.apply_along_axis(func, 0, subsim)
G.append(gene_vec)
return scipy.asarray(G), newindex
def goterm2desc(gotermlist):
"""Returns the go-terms description keyed by go-term
"""
rpy.r.library("GO")
term2desc = {}
for term in gotermlist:
try:
desc = rpy.r('Term(GOTERM[["' +str(term)+ '"]])')
term2desc[str(term)] = desc
except:
raise Warning("Description not found for %s\n Mapping incomplete" %term)
return term2desc
def parents_dag(go_terms, ontology=['BP']):
""" Returns a list of lists representation of a GO DAG parents of goterms."""
try:
rpy.r.library("GOstats")
except:
raise ImportError, "Gostats"
assert(go_terms[0][:3]=='GO:')
# go valid namespace
go_env = {'BP':rpy.r.BPPARENTS, 'MF':rpy.r.MFPARENTS, 'CC': rpy.r.CCPARENTS}

141
scripts/lpls/run_smoker.py Normal file
View File

@ -0,0 +1,141 @@
import sys
import rpy
from pylab import gca, figure, subplot
from scipy import *
from lpls import *
import rpy_go
sys.path.append("../../fluents") # home of dataset
sys.path.append("../../fluents/lib") # home of cx_stats
import dataset
import cx_stats
from plots_lpls import plot_corrloads
######## DATA ##########
# full smoker data
DX = dataset.read_ftsv(open("../../data/smokers-full/Xfull.ftsv"))
DY = dataset.read_ftsv(open("../../data/smokers-full/Yg.ftsv"))
Y = DY.asarray()
# select subset genes by SAM
rpy.r.library("siggenes")
rpy.r.library("qvalue")
data = DX.asarray().T
# data = data[:100,:]
rpy.r.assign("data", data)
cl = dot(DY.asarray(), diag([1,2,3])).sum(1)
rpy.r.assign("cl", cl)
rpy.r.assign("B", 100)
# Perform a SAM analysis.
print "Starting SAM"
sam = rpy.r('sam.out<-sam(data=data,cl=cl,B=B,rand=123)')
print "SAM done"
# Compute the q-values of the genes.
qq = rpy.r('qobj<-qvalue(sam.out@p.value)')
qvals = asarray(qq['qvalues'])
# cut off
co = 0.001
index = where(qvals<0.01)[0]
# Subset data
X = DX.asarray()
Xr = X[:,index]
gene_ids = DX.get_identifiers('gene_ids', index)
### Build GO data ####
print "Go terms ..."
goterms = rpy_go.goterms_from_gene(gene_ids)
terms = set()
for t in goterms.values():
terms.update(t)
terms = list(terms)
rpy.r.library("GOSim")
# Go-term similarity matrix
methods = ("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin")
meth = methods[0]
print "Term-term similarity matrix (method = %s)" %meth
if meth=="CoutoEnriched":
rpy.r('setEnrichmentFactors(alpha=0.1,beta=0.5)')
tmat = rpy.r.getTermSim(terms, verbose=False, method=meth)
# check if all terms where found
nanindex = where(isnan(tmat[:,0]))[0]
keep=[]
has_miss = False
if len(nanindex)>0:
has_miss = True
print "Some terms missing in similarity matrix"
keep = where(isnan(tmat[:,0])!=True)[0]
print "Number of nans: %d" %len(nanindex)
tmat_new = tmat[:,keep][keep,:]
new_terms = [i for ind,i in enumerate(terms) if ind in keep]
bad_terms = [i for ind,i in enumerate(terms) if ind not in keep]
# update go-term dict
for gene,trm in goterms.items():
for t in trm:
if t in bad_terms:
trm.remove(t)
if len(trm)==0:
print "Removing gene: %s" %gene
goterms[gene]=trm
terms = new_terms
tmat = tmat_new
# Z-matrix
# func (min, max, median, mean, etc),
# func decides on the representation of gene-> goterm when multiple
# goterms exist for one gene
Z, newind = rpy_go.genego_matrix(goterms, tmat, gene_ids, terms,func=mean)
Z = Z.T
# update X matrix (no go-terms available)
Xr = Xr[:,newind]
gene_ids = asarray(gene_ids)[newind]
######## LPLSR ########
print "LPLSR ..."
a_max = 5
aopt = 2
alpha=.5
T, W, P, Q, U, L, K, B, b0, evx, evy, evz = nipals_lpls(Xr,Y,Z, a_max, alpha)
# Correlation loadings
dx,Rx,ssx= correlation_loadings(Xr, T, P)
dx,Ry,ssx= correlation_loadings(Y, T, Q)
cadx,Rz,ssx= correlation_loadings(Z.T, K, L)
# Prediction error
rmsep , yhat, class_error = cv_lpls(Xr, Y, Z, a_max, alpha=alpha)
# Significance Hotellings T
Wx, Wz, Wy, = jk_lpls(Xr, Y, Z, aopt)
tsqx = cx_stats.hotelling(Wx,W[:,:aopt])
tsqz = cx_stats.hotelling(Wz,L[:,:aopt])
## plots ##
figure(1) #rmsep
#bar()
figure(2) # Hypoid correlations
plot_corrloads(Rz, pc1=0, pc2=1, s=tsqz/10.0, c='b', zorder=5, expvar=evz, ax=None)
ax = gca()
plot_corrloads(Ry, pc1=0, pc2=1, s=150, c='g', zorder=5, expvar=evy, ax=ax)
figure(3)
subplot(221)
ax = gca()
plot_corrloads(Rx, pc1=0, pc2=1, s=tsqx/2.0, c='b', zorder=5, expvar=evx, ax=ax)
# title('X correlation')
subplot(222)
ax = gca()
plot_corrloads(Ry, pc1=0, pc2=1, s=150, c='g', zorder=5, expvar=evy, ax=ax)
#title('Y correlation')
subplot(223)
ax = gca()
plot_corrloads(Rz, pc1=0, pc2=1, s=tsqz/10.0, c='r', zorder=5, expvar=evz, ax=ax)
#title('Z correlation')
subplot(224)
plot(arange(len(evx)), evx, 'b', label='X', linewidth=2)
plot(evy, 'g', label='Y', linewidth=2)
plot(evz, 'r', label='Z', linewidth=2)
legend(loc=2)
ylabel('Explained variance')
xlabel('Component')
show()

View File

@ -0,0 +1,44 @@
def smdb_annot(orflist=None, input_fname='registry.genenames.tab', output_fname='yeast.annot'):
"""Reads registry.genenames.tab from the Stanford yeast
microarray database.
Available from:
ftp://genome-ftp.stanford.edu/pub/yeast/data_download/gene_registry/registry.genenames.tab
input: orf -- list of orfs (open reading frames)
file -- (optional) file to fetch info from
registry.genames contains:
0 = Locus name
1 = Other name
2 = Description
3 = Gene product
4 = Phenotype
5 = ORF name
6 = SGDID
NB! Other name, Gene product and Phenotype may have more
than one mapping. These are separated by |
Output: writes an annotation file
"""
outfile = open(output_fname, 'w')
header = "Orf\tLocus_id\tOther_name\tDescription\tGene_product\tPhenotype\tSGD_ID\n"
outfile.write(header)
text = open(input_fname, 'r').read().splitlines()
for line in text:
els = line.split('\t')
orf_name = els.pop(5)
if orf_name!='': # we dont care about non-named orfs
if orflist and orf_name not in orflist:
break
for e in els:
if e !='':
outfile.write(str(e) + "\t")
else:
outfile.write("NA")
f.write("\n")