Updates
This commit is contained in:
@@ -2,8 +2,9 @@ import pylab
|
||||
import matplotlib
|
||||
import networkx as nx
|
||||
import scipy
|
||||
import rpy
|
||||
|
||||
def plot_corrloads(R, pc1=0,pc2=1,s=20, c='b', zorder=5,expvar=None,ax=None,drawback=True, labels=None):
|
||||
def plot_corrloads(R, pc1=0,pc2=1,s=20, c='b', zorder=5,expvar=None,ax=None,drawback=True, labels=None, **kwds):
|
||||
""" Correlation loading plot."""
|
||||
|
||||
# background
|
||||
@@ -25,7 +26,7 @@ def plot_corrloads(R, pc1=0,pc2=1,s=20, c='b', zorder=5,expvar=None,ax=None,draw
|
||||
ax.axvline(lw=1.5,color='k')
|
||||
|
||||
# corrloads
|
||||
ax.scatter(R[:,pc1], R[:,pc2], s=s, c=c,zorder=zorder)
|
||||
ax.scatter(R[:,pc1], R[:,pc2], s=s, c=c,zorder=zorder, **kwds)
|
||||
ax.set_xlim([-1,1])
|
||||
ax.set_ylim([-1,1])
|
||||
if expvar!=None:
|
||||
@@ -39,24 +40,45 @@ def plot_corrloads(R, pc1=0,pc2=1,s=20, c='b', zorder=5,expvar=None,ax=None,draw
|
||||
pylab.text(r[pc1], r[pc2], " " + name)
|
||||
#pylab.show()
|
||||
|
||||
def plot_dag(edge_dict, node_color='b', node_size=30,labels=None,nodelist=None,pos=None):
|
||||
|
||||
def dag(terms, ontology):
|
||||
rpy.r.library("GOstats")
|
||||
__parents = {'bp' : rpy.r.GOBPPARENTS,
|
||||
'mf' : rpy.r.GOMFPARENTS,
|
||||
'cc' : rpy.r.GOCCPARENTS}
|
||||
gograph = rpy.r.GOGraph(terms, __parents.get(ontology))
|
||||
dag = rpy.r.edges(gograph)
|
||||
#setattr(dag, "_ontology", ontology)
|
||||
return dag
|
||||
|
||||
def plot_dag(dag, node_color='b', node_size=30,with_labels=False,nodelist=None,pos=None):
|
||||
|
||||
rpy.r.library("GOstats")
|
||||
|
||||
dag_name = "GO-bp"
|
||||
# networkx does not play well with colon in node names
|
||||
clean_edges = {}
|
||||
for head, neigb in edge_dict.items():
|
||||
for head, neigb in dag.items():
|
||||
head = head.replace(":", "_")
|
||||
nei = [i.replace(":", "_") for i in neigb]
|
||||
clean_edges[head] = nei
|
||||
if pos==None:
|
||||
G = nx.from_dict_of_lists(clean_edges, nx.DiGraph(name='GO'))
|
||||
G = nx.from_dict_of_lists(clean_edges, nx.DiGraph(name=dag_name))
|
||||
pos = nx.pydot_layout(G, prog='dot')
|
||||
G = nx.from_dict_of_lists(edge_dict, nx.DiGraph(name='GO'))
|
||||
pos_new = {}
|
||||
for k, v in pos.items():
|
||||
x,y = v
|
||||
k = k.replace("_", ":")
|
||||
pos_new[k] = (x, -y)
|
||||
pos = pos_new
|
||||
|
||||
G = nx.from_dict_of_lists(dag, nx.Graph(name=dag_name))
|
||||
if len(node_color)>1:
|
||||
assert(len(node_color)==len(nodelist))
|
||||
if labels!=None:
|
||||
with_labels=True
|
||||
|
||||
nx.draw_networkx(G,pos, with_labels=with_labels, node_size=node_size, node_color=node_color, nodelist=nodelist)
|
||||
|
||||
return pos
|
||||
|
||||
|
||||
def plot_ZXcorr(gene_ids, term_ids, gene2go, X, D, scale=True):
|
||||
""" Plot correlation/covariance between genes as a function of
|
||||
@@ -80,6 +102,39 @@ def plot_ZXcorr(gene_ids, term_ids, gene2go, X, D, scale=True):
|
||||
|
||||
def clustering_index(T, Yg):
|
||||
pass
|
||||
|
||||
def draw_gene(gid, gene_ids, gene2go, Z, tmat, terms, G, pos):
|
||||
"""Draw dags with marked go terms and distance to all terms.
|
||||
"""
|
||||
sub_terms = gene2go[gid]
|
||||
sub_index = [i for i, tid in enumerate(terms) if tid in sub_terms]
|
||||
node_size = 70.*scipy.ones((len(terms),))
|
||||
node_size[sub_index] = 500
|
||||
gene_index = [i for i, gene_id in enumerate(gene_ids) if gene_id==gid]
|
||||
node_color = Z[:,gene_index].ravel()
|
||||
#1/0
|
||||
#node_size=200*node_color
|
||||
#node_color='g'
|
||||
pylab.figure()
|
||||
nx.draw_networkx(G, pos, node_color=node_color, node_size=node_size, with_labels=False, nodelist=terms)
|
||||
ax = pylab.gca()
|
||||
pylab.colorbar(ax.collections[0])
|
||||
|
||||
for tid in sub_index:
|
||||
pylab.figure()
|
||||
node_color = tmat[tid,:]
|
||||
#node_size = 70*scipy.ones((len(terms),))
|
||||
node_size = 170*node_color
|
||||
node_size[tid] = 500
|
||||
nx.draw_networkx(G, pos, node_color=node_color, node_size=node_size, with_labels=False, nodelist=terms)
|
||||
pylab.title(terms[tid])
|
||||
ax = pylab.gca()
|
||||
pylab.colorbar(ax.collections[0])
|
||||
pylab.show()
|
||||
#nx.show()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user