Added information content drag'n'drop to z loadings plot.
This commit is contained in:
parent
72e300c95e
commit
4b80baf225
@ -51,7 +51,7 @@ class BlmScatterPlot(plots.ScatterPlot):
|
||||
absi= ordi = 0
|
||||
self._absi = absi
|
||||
self._ordi = ordi
|
||||
self._cmap = cm.jet
|
||||
self._cmap = cm.summer
|
||||
dataset_1 = model.as_dataset(part_name)
|
||||
id_dim = dataset_1.get_dim_name(0)
|
||||
sel_dim = dataset_1.get_dim_name(1)
|
||||
@ -185,10 +185,17 @@ class LplsXLoadingPlot(BlmScatterPlot):
|
||||
title = "Lpls x-loadings (%s)" %model._dataset['X'].get_name()
|
||||
BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='P', color_by='tsqx')
|
||||
|
||||
class LplsZLoadingPlot(BlmScatterPlot):
|
||||
class LplsZLoadingPlot(BlmScatterPlot, plots.PlotThresholder):
|
||||
def __init__(self, model, absi=0, ordi=1):
|
||||
title = "Lpls z-loadings (%s)" %model._dataset['Z'].get_name()
|
||||
BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='L', color_by='tsqz')
|
||||
plots.PlotThresholder.__init__(self, "IC")
|
||||
|
||||
|
||||
def _update_color_from_dataset(self, ds):
|
||||
BlmScatterPlot._update_color_from_dataset(self, ds)
|
||||
self.set_threshold_dataset(ds)
|
||||
|
||||
|
||||
class LplsXCorrelationPlot(BlmScatterPlot):
|
||||
def __init__(self, model, absi=0, ordi=1):
|
||||
|
113
fluents/plots.py
113
fluents/plots.py
@ -382,6 +382,7 @@ class ScatterPlot(Plot):
|
||||
self.c = c
|
||||
self.kw = kw
|
||||
self.current_dim = id_dim
|
||||
self._map_ids = dataset_1.get_identifiers(id_dim, sorted=True)
|
||||
|
||||
x_index = dataset_1[sel_dim][id_1]
|
||||
if sel_dim_2:
|
||||
@ -441,25 +442,20 @@ class ScatterPlot(Plot):
|
||||
def is_mappable_with(self, obj):
|
||||
"""Returns True if dataset/selection is mappable with this plot.
|
||||
"""
|
||||
print "is_mappable_with"
|
||||
if isinstance(obj, fluents.dataset.Dataset):
|
||||
if self.current_dim in obj.get_dim_name():
|
||||
print "is_mappable_with: True"
|
||||
return True
|
||||
|
||||
elif isinstance(obj, fluents.dataset.Selection):
|
||||
if self.current_dim in obj.get_dim_name():
|
||||
print "is_mappable_with: True"
|
||||
return True
|
||||
|
||||
else:
|
||||
print "is_mappable_with: False"
|
||||
return False
|
||||
|
||||
def _update_color_from_dataset(self, data):
|
||||
"""Updates the facecolors from a dataset.
|
||||
"""
|
||||
print "_update_color_from_dataset"
|
||||
array = data.asarray()
|
||||
#only support for 2d-arrays:
|
||||
try:
|
||||
@ -576,7 +572,6 @@ class HistogramPlot(Plot):
|
||||
# Set default paramteters
|
||||
if not kw.has_key('bins'):
|
||||
kw['bins'] = self._get_binsize()
|
||||
print kw['bins']
|
||||
|
||||
# Initial draw
|
||||
self.axes.grid(False)
|
||||
@ -970,6 +965,112 @@ class VennPlot(Plot):
|
||||
return scipy.sqrt( (x2-x1)**2 + (y2-y1)**2 )
|
||||
|
||||
|
||||
class PlotThresholder:
|
||||
"""Mixin class for plots that needs to filter nodes within a threshold
|
||||
range.
|
||||
"""
|
||||
def __init__(self, text="x"):
|
||||
"""Constructor.
|
||||
|
||||
@param text: Name of the variable the threshold is on.
|
||||
"""
|
||||
self._threshold_ds = None
|
||||
self._add_spin_buttons(text)
|
||||
self._sb_min.set_sensitive(False)
|
||||
self._sb_max.set_sensitive(False)
|
||||
|
||||
def set_threshold_dataset(self, ds):
|
||||
"""Sets the dataset to threshold on.
|
||||
|
||||
@param ds: A dataset where one dimension corresponds to the select dimension
|
||||
in the plot, and any other dimensions have length 1
|
||||
"""
|
||||
self._threshold_ds = ds
|
||||
self._sb_min.set_sensitive(True)
|
||||
self._sb_max.set_sensitive(True)
|
||||
|
||||
def _add_spin_buttons(self, text):
|
||||
"""Adds spin buttons to the toolbar for selecting minimum and maximum
|
||||
threshold values on information content."""
|
||||
sb_min = gtk.SpinButton(digits=2)
|
||||
sb_min.set_range(0, 100)
|
||||
sb_min.set_value(0)
|
||||
sb_min.set_increments(.1, 1.)
|
||||
sb_min.connect('value-changed', self._on_value_changed)
|
||||
self._sb_min = sb_min
|
||||
|
||||
sb_max = gtk.SpinButton(digits=2)
|
||||
sb_max.set_range(0, 100)
|
||||
sb_max.set_value(1)
|
||||
sb_max.set_increments(.1, 1.)
|
||||
sb_max.connect('value-changed', self._on_value_changed)
|
||||
self._sb_max = sb_max
|
||||
|
||||
label = gtk.Label(" < %s < " % text)
|
||||
hbox = gtk.HBox()
|
||||
hbox.pack_start(sb_min)
|
||||
hbox.pack_start(label)
|
||||
hbox.pack_start(sb_max)
|
||||
ti = gtk.ToolItem()
|
||||
ti.set_expand(False)
|
||||
ti.add(hbox)
|
||||
sb_min.show()
|
||||
sb_max.show()
|
||||
label.show()
|
||||
hbox.show()
|
||||
ti.show()
|
||||
self._toolbar.insert(ti, -1)
|
||||
ti.set_tooltip(self._toolbar.tooltips, "Set threshold")
|
||||
|
||||
def set_threshold(self, min, max):
|
||||
"""Sets min and max to the given values.
|
||||
Updates the plot accordingly to show only values that have a
|
||||
value within the boundaries. Other values are
|
||||
also excluded from being selected from the plot.
|
||||
@param ic_min Do not show nodes with IC below this value.
|
||||
@param ic_max Do not show nodes with IC above this value.
|
||||
"""
|
||||
ds = self._threshold_ds
|
||||
if ds == None:
|
||||
return
|
||||
|
||||
icnodes = ds.existing_identifiers('go-terms', self._map_ids)
|
||||
icindices = ds.get_indices('go-terms', icnodes)
|
||||
a = scipy.ravel(ds.asarray()[icindices])
|
||||
|
||||
good = set(scipy.array(icnodes)[(a>=min) & (a<=max)])
|
||||
|
||||
sizes = scipy.zeros(len(self._map_ids))
|
||||
visible = set()
|
||||
for i, n in enumerate(self._map_ids):
|
||||
if n in good:
|
||||
sizes[i] = 50
|
||||
visible.add(n)
|
||||
else:
|
||||
sizes[i] = 0
|
||||
self.visible = visible
|
||||
|
||||
self._mappable._sizes = sizes
|
||||
self.canvas.draw()
|
||||
|
||||
def get_nodes_within_bounds(self):
|
||||
"""Get a list of all nodes within the bounds of the selection in the
|
||||
seleted dataset.
|
||||
"""
|
||||
pass
|
||||
|
||||
def filter_nodes(self, nodes):
|
||||
"""Filter a list of nodes and return only those that are within the
|
||||
threshold boundaries."""
|
||||
pass
|
||||
|
||||
def _on_value_changed(self, sb):
|
||||
"""Callback on spin button value changes."""
|
||||
min = self._sb_min.get_value()
|
||||
max = self._sb_max.get_value()
|
||||
self.set_threshold(min, max)
|
||||
|
||||
|
||||
# Create zoom-changed signal
|
||||
gobject.signal_new('zoom-changed', Plot, gobject.SIGNAL_RUN_LAST, None,
|
||||
(gobject.TYPE_PYOBJECT,))
|
||||
|
@ -559,119 +559,16 @@ class VolcanoPlot(plots.ScatterPlot):
|
||||
sel_dim_2='_p', **kw)
|
||||
|
||||
|
||||
class PlotThresholder:
|
||||
"""Mixin class for plots that needs to filter nodes within a threshold
|
||||
range.
|
||||
"""
|
||||
def __init__(self, text="x"):
|
||||
"""Constructor.
|
||||
|
||||
@param text: Name of the variable the threshold is on.
|
||||
"""
|
||||
self._threshold_ds = None
|
||||
self._add_spin_buttons(text)
|
||||
self._sb_min.set_sensitive(False)
|
||||
self._sb_max.set_sensitive(False)
|
||||
|
||||
def set_threshold_dataset(self, ds):
|
||||
"""Sets the dataset to threshold on.
|
||||
|
||||
@param ds: A dataset where one dimension corresponds to the select dimension
|
||||
in the plot, and any other dimensions have length 1
|
||||
"""
|
||||
self._threshold_ds = ds
|
||||
self._sb_min.set_sensitive(True)
|
||||
self._sb_max.set_sensitive(True)
|
||||
|
||||
def _add_spin_buttons(self, text):
|
||||
"""Adds spin buttons to the toolbar for selecting minimum and maximum
|
||||
threshold values on information content."""
|
||||
sb_min = gtk.SpinButton(digits=2)
|
||||
sb_min.set_range(0, 100)
|
||||
sb_min.set_value(0)
|
||||
sb_min.set_increments(.1, 1.)
|
||||
sb_min.connect('value-changed', self._on_value_changed)
|
||||
self._sb_min = sb_min
|
||||
|
||||
sb_max = gtk.SpinButton(digits=2)
|
||||
sb_max.set_range(0, 100)
|
||||
sb_max.set_value(1)
|
||||
sb_max.set_increments(.1, 1.)
|
||||
sb_max.connect('value-changed', self._on_value_changed)
|
||||
self._sb_max = sb_max
|
||||
|
||||
label = gtk.Label(" < %s < " % text)
|
||||
hbox = gtk.HBox()
|
||||
hbox.pack_start(sb_min)
|
||||
hbox.pack_start(label)
|
||||
hbox.pack_start(sb_max)
|
||||
ti = gtk.ToolItem()
|
||||
ti.set_expand(False)
|
||||
ti.add(hbox)
|
||||
sb_min.show()
|
||||
sb_max.show()
|
||||
label.show()
|
||||
hbox.show()
|
||||
ti.show()
|
||||
self._toolbar.insert(ti, -1)
|
||||
ti.set_tooltip(self._toolbar.tooltips, "Set threshold")
|
||||
|
||||
def set_threshold(self, min, max):
|
||||
"""Sets min and max to the given values.
|
||||
Updates the plot accordingly to show only values that have a
|
||||
value within the boundaries. Other values are
|
||||
also excluded from being selected from the plot.
|
||||
@param ic_min Do not show nodes with IC below this value.
|
||||
@param ic_max Do not show nodes with IC above this value.
|
||||
"""
|
||||
ds = self._threshold_ds
|
||||
if ds == None:
|
||||
return
|
||||
|
||||
icnodes = ds.existing_identifiers('go-terms', self.nodes)
|
||||
icindices = ds.get_indices('go-terms', icnodes)
|
||||
a = ravel(ds.asarray()[icindices])
|
||||
good = set(array(icnodes)[(a>=min) & (a<=max)])
|
||||
|
||||
sizes = zeros(len(self.nodes))
|
||||
visible = set()
|
||||
for i, n in enumerate(self.nodes):
|
||||
if n in good:
|
||||
sizes[i] = 50
|
||||
visible.add(n)
|
||||
else:
|
||||
sizes[i] = 0
|
||||
self.visible = visible
|
||||
|
||||
self.node_collection._sizes = sizes
|
||||
self.canvas.draw()
|
||||
|
||||
def get_nodes_within_bounds(self):
|
||||
"""Get a list of all nodes within the bounds of the selection in the
|
||||
seleted dataset.
|
||||
"""
|
||||
pass
|
||||
|
||||
def filter_nodes(self, nodes):
|
||||
"""Filter a list of nodes and return only those that are within the
|
||||
threshold boundaries."""
|
||||
pass
|
||||
|
||||
def _on_value_changed(self, sb):
|
||||
"""Callback on spin button value changes."""
|
||||
min = self._sb_min.get_value()
|
||||
max = self._sb_max.get_value()
|
||||
self.set_threshold(min, max)
|
||||
|
||||
|
||||
class DagPlot(plots.Plot):
|
||||
def __init__(self, graph, dim='go-terms', pos=None, nodecolor='b', nodesize=40,
|
||||
with_labels=False, name='DAG Plot'):
|
||||
|
||||
plots.Plot.__init__(self, name)
|
||||
self.nodes = graph.nodes()
|
||||
self._map_ids = self.nodes
|
||||
self.graph = graph
|
||||
self._pos = pos
|
||||
self._cmap = matplotlib.cm.summer
|
||||
self._nodesize = nodesize
|
||||
self._nodecolor = nodecolor
|
||||
self._with_labels = with_labels
|
||||
@ -700,6 +597,7 @@ class DagPlot(plots.Plot):
|
||||
linewidth=lw,
|
||||
zorder=3)
|
||||
self._mappable = self.node_collection
|
||||
self._mappable.set_cmap(self._cmap)
|
||||
|
||||
# selected nodes is a transparent graph that adjust node-edge visibility
|
||||
# according to the current selection needed to get get the selected
|
||||
@ -850,13 +748,13 @@ class DagPlot(plots.Plot):
|
||||
self.canvas.draw()
|
||||
|
||||
|
||||
class ThresholdDagPlot(DagPlot, PlotThresholder):
|
||||
class ThresholdDagPlot(DagPlot, plots.PlotThresholder):
|
||||
def __init__(self, graph, dim='go-terms', pos=None, nodecolor='b', nodesize=40,
|
||||
with_labels=False, name='DAG Plot'):
|
||||
DagPlot.__init__(self, graph, dim='go-terms', pos=None,
|
||||
nodecolor='b', nodesize=40,
|
||||
with_labels=False, name='DAG Plot')
|
||||
PlotThresholder.__init__(self, "IC")
|
||||
plots.PlotThresholder.__init__(self, "IC")
|
||||
|
||||
def rectangle_select_callback(self, x1, y1, x2, y2, key):
|
||||
ids = self.points_in_rect(x1, y1, x2, y2, key)
|
||||
|
Reference in New Issue
Block a user