whitespace

This commit is contained in:
Arnar Flatberg 2007-03-14 16:33:54 +00:00
parent 3bd21ab089
commit 3d2492578e

View File

@ -10,11 +10,15 @@ from engines import w_simpls,pls,bridge,pca
from cx_utils import m_shape
def w_pls_cv_val(X, Y, amax, n_blocks=None, algo='simpls'):
"""Returns and RMSEP for pls tailored for wide X.
"""Returns rmsep and aopt for pls tailored for wide X.
comments:
-- X, Y inputs need to be centered (fixme: check)
"""
k, l = m_shape(Y)
PRESS = zeros((l, amax+1), dtype='f')
# X,Y are centered0
if n_blocks==None:
n_blocks = Y.shape[0]
XXt = dot(X, X.T)
@ -29,7 +33,7 @@ def w_pls_cv_val(X, Y, amax, n_blocks=None, algo='simpls'):
That = dot(Doi, dot(U, inv(triu(dot(H.T,U))) ))
else:
raise NotImplementedError
#Yhat = empty((amax, k, l),dtype='<f8')
Yhat = []
for j in range(l):
TQ = dot(That, triu(dot(Q[j,:][:,newaxis], ones((1,amax)))) )
@ -41,15 +45,21 @@ def w_pls_cv_val(X, Y, amax, n_blocks=None, algo='simpls'):
aopt = find_aopt_from_sep(rmsep)
return rmsep, aopt
def pls_val(X, Y, amax=2, n_blocks=10,algo='pls'):
def pls_val(X, Y, amax=2, n_blocks=10, algo='pls', metric=None):
""" Validation results of pls model.
comments:
-- X, Y inputs need to be centered (fixme: check)
"""
k, l = m_shape(Y)
PRESS = zeros((l, amax+1), dtype='<f8')
EE = zeros((amax, k, l), dtype='<f8')
Yhat = zeros((amax, k, l), dtype='<f8')
# X,Y are centered
V = pls_gen(X, Y, n_blocks=n_blocks, center=True, index_out=True)
V = pls_gen(X, Y, n_blocks=n_blocks, center=True, index_out=True, metric=metric)
for Xin, Xout, Yin, Yout, out in V:
ym = -sum(Yout,0)[newaxis]/Yin.shape[0]
Yin = (Yin - ym)
@ -73,13 +83,19 @@ def pls_val(X, Y, amax=2, n_blocks=10,algo='pls'):
def pca_alter_val(a, amax, n_sets=10, method='diag'):
"""Pca validation by altering elements in X.
comments:
-- may do all jk estimates in this loop
"""
# todo: it is just as easy to do jk-estimates her as well
V = diag_pert(a, n_sets, center=True, index_out=True)
sep = empty((n_sets, amax), dtype='f')
for i, (xi, ind) in enumerate(V):
dat_i = pca(xi, amax, mode='detailed')
Ti,Pi = dat_i['T'],dat_i['P']
Ti, Pi = dat_i['T'],dat_i['P']
for j in xrange(amax):
Xhat = dot(Ti[:,:j+1], Pi[:,:j+1].T)
a_sub = a.ravel().take(ind)
@ -100,7 +116,9 @@ def pca_cv_val(a, amax, n_sets):
output:
-- sep, (amax x m x n), squared error of prediction (press)
-- aopt, guestimated optimal number of components
"""
m, n = a.shape
E = empty((amax, m, n), dtype='f')
xtot = (a**2).sum() # this needs centering
@ -117,11 +135,12 @@ def pca_cv_val(a, amax, n_sets):
sep.append(E[a].sum()/xtot)
sep = array(sep)
aopt = find_aopt_from_sep(sep)
return sep, aopt
def pls_jkW(a, b, amax, n_blocks=None, algo='pls', use_pack=False, center=True):
def pls_jkW(a, b, amax, n_blocks=None, algo='pls', use_pack=True, center=True, metric=None):
""" Returns CV-segments of paramter W for wide X.
todo: add support for T,Q and B
"""
if n_blocks == None:
@ -129,26 +148,28 @@ def pls_jkW(a, b, amax, n_blocks=None, algo='pls', use_pack=False, center=True):
Wcv = empty((n_blocks, a.shape[1], amax), dtype='f')
if use_pack:
if use_pack and metric==None:
u, s, inflater = svd(a, full_matrices=0)
a = u*s
V = pls_gen(a, b, n_blocks=n_blocks, center=center)
V = pls_gen(a, b, n_blocks=n_blocks, center=center, metric=metric)
for nn,(a_in, a_out, b_in, b_out) in enumerate(V):
if algo=='pls':
dat = pls(a_in, b_in, amax, 'loads', 'fast')
elif algo=='bridge':
dat = bridge(a_in, b_in, amax, 'loads', 'fast')
W = dat['W']
if use_pack:
if use_pack and metric==None:
W = dot(inflater.T, W)
Wcv[nn,:,:] = W
return Wcv
def pca_jkP(a, aopt, n_blocks=None):
def pca_jkP(a, aopt, n_blocks=None, metric=None):
"""Returns loading from PCA on CV-segments.
input:
@ -178,9 +199,11 @@ def pca_jkP(a, aopt, n_blocks=None):
return PP
def find_aopt_from_sep(sep, method='75perc'):
"""Returns an estimate of optimal number of components from rmsecv.
"""
if method=='vanilla':
# min rmsep
rmsecv = sqrt(sep.mean(0))