ups
This commit is contained in:
parent
9a2e259209
commit
349cab3c51
|
@ -197,7 +197,7 @@ class PLS(Model):
|
|||
Model.__init__(self, id, name)
|
||||
self._options = PlsOptions()
|
||||
|
||||
def validation(self, amax, n_sets, cv_val_method):
|
||||
def validation(self):
|
||||
"""Returns rmsep for pls model.
|
||||
"""
|
||||
m, n = self.model['E0'].shape
|
||||
|
@ -207,7 +207,7 @@ class PLS(Model):
|
|||
val_engine = pls_val
|
||||
if self._options['calc_cv']==True:
|
||||
rmsep, aopt = val_engine(self.model['E0'], self.model['F0'],
|
||||
amax, n_sets)
|
||||
self._options['amax'], self._options['n_sets'])
|
||||
self.model['rmsep'] = rmsep[:,:-1]
|
||||
self.model['aopt'] = aopt
|
||||
else:
|
||||
|
@ -319,7 +319,7 @@ class PLS(Model):
|
|||
self.model['E0'] = self._data['X']
|
||||
self.model['F0'] = self._data['Y']
|
||||
|
||||
self.validation(**options.validation_options())
|
||||
self.validation()
|
||||
self.make_model(self.model['E0'], self.model['F0'],
|
||||
**options.make_model_options())
|
||||
# variance captured
|
||||
|
|
|
@ -6,81 +6,189 @@ There is almost no typechecking of any kind here, just focus on speed
|
|||
import math
|
||||
from scipy.linalg import svd,inv
|
||||
from scipy import dot,empty,eye,newaxis,zeros,sqrt,diag,\
|
||||
apply_along_axis,mean,ones,randn,empty_like,outer,c_,\
|
||||
rand,sum,cumsum,matrix
|
||||
apply_along_axis,mean,ones,randn,empty_like,outer,r_,c_,\
|
||||
rand,sum,cumsum,matrix, expand_dims,minimum,where
|
||||
has_sym=True
|
||||
try:
|
||||
import symmeig
|
||||
from symeig import symeig
|
||||
except:
|
||||
has_sym = False
|
||||
has_sym=False
|
||||
|
||||
def pca(a, aopt,scale='scores',mode='normal',center_axis=-1):
|
||||
""" Principal Component Analysis.
|
||||
|
||||
Performs PCA on given matrix and returns results in a dictionary.
|
||||
|
||||
:Parameters:
|
||||
a : array
|
||||
Data measurement matrix, (samples x variables)
|
||||
aopt : int
|
||||
Number of components to use, aopt<=min(samples, variables)
|
||||
|
||||
:Returns:
|
||||
results : dict
|
||||
keys -- values, T -- scores, P -- loadings, E -- residuals,
|
||||
lev --leverages, ssq -- sum of squares, expvar -- cumulative
|
||||
explained variance, aopt -- number of components used
|
||||
|
||||
:OtherParameters:
|
||||
mode : str
|
||||
Amount of info retained, ('fast', 'normal', 'detailed')
|
||||
center_axis : int
|
||||
Center along given axis. If neg.: no centering (-inf,..., matrix modes)
|
||||
|
||||
:SeeAlso:
|
||||
- pcr : other blm
|
||||
- pls : other blm
|
||||
- lpls : other blm
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
Uses kernel speed-up if m>>n or m<<n.
|
||||
|
||||
If residuals turn rank deficient, a lower number of component than given
|
||||
in input will be used. The number of components used is given in results-dict.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> import scipy,engines
|
||||
>>> a=scipy.asarray([[1,2,3],[2,4,5]])
|
||||
>>> dat=engines.pca(a, 2)
|
||||
>>> dat['expvar']
|
||||
array([0.,99.8561562, 100.])
|
||||
|
||||
def pca(a, aopt, scale='scores', mode='normal'):
|
||||
""" Principal Component Analysis model
|
||||
mode:
|
||||
-- fast : returns smallest dim scaled (T for n<=m, P for n>m )
|
||||
-- normal : returns all model params and residuals after aopt comp
|
||||
-- detailed : returns all model params and all residuals
|
||||
"""
|
||||
|
||||
if center_axis>=0:
|
||||
a = a - expand_dims(a.mean(center_axis), center_axis)
|
||||
m, n = a.shape
|
||||
#print "rows: %s cols: %s" %(m,n)
|
||||
if m>(n+100) or n>(m+100):
|
||||
u, s, v = esvd(a)
|
||||
u, e, v = esvd(a)
|
||||
s = sqrt(e)
|
||||
else:
|
||||
u, s, vt = svd(a, 0)
|
||||
v = vt.T
|
||||
eigvals = (1./m)*s
|
||||
e = s**2
|
||||
tol = 1e-10
|
||||
eff_rank = sum(s>s[0]*tol)
|
||||
aopt = minimum(aopt, eff_rank)
|
||||
T = u*s
|
||||
s = s[:aopt]
|
||||
e = e[:aopt]
|
||||
T = T[:,:aopt]
|
||||
P = v[:,:aopt]
|
||||
|
||||
if scale=='loads':
|
||||
tnorm = apply_along_axis(vnorm, 0, T)
|
||||
T = T/tnorm
|
||||
P = P*tnorm
|
||||
T = T/s
|
||||
P = P*s
|
||||
|
||||
if mode == 'fast':
|
||||
return {'T':T, 'P':P}
|
||||
return {'T':T, 'P':P, 'aopt':aopt}
|
||||
|
||||
if mode=='detailed':
|
||||
"""Detailed mode returns residual matrix for all comp.
|
||||
That is E, is a three-mode matrix: (amax, m, n) """
|
||||
E = empty((aopt, m, n))
|
||||
E = empty((aopt, m, n))
|
||||
ssq = []
|
||||
lev = []
|
||||
expvarx = empty((aopt, aopt+1))
|
||||
for ai in range(aopt):
|
||||
e = a - dot(T[:,:ai+1], P[:,:ai+1].T)
|
||||
E[ai,:,:] = e.copy()
|
||||
E[ai,:,:] = a - dot(T[:,:ai+1], P[:,:ai+1].T)
|
||||
ssq.append([(E[ai,:,:]**2).sum(0), (E[ai,:,:]**2).sum(1)])
|
||||
if scale=='loads':
|
||||
lev.append([((s*T)**2).sum(1), (P**2).sum(1)])
|
||||
else:
|
||||
lev.append([(T**2).sum(1), ((s*P)**2).sum(1)])
|
||||
|
||||
expvarx[ai,:] = r_[0, 100*e.cumsum()/e.sum()]
|
||||
|
||||
else:
|
||||
E = a - dot(T,P.T)
|
||||
# residuals
|
||||
E = a - dot(T, P.T)
|
||||
SEP = E**2
|
||||
ssq = [SEP.sum(0), SEP.sum(1)]
|
||||
# leverages
|
||||
if scale=='loads':
|
||||
lev = [(1./m)+(T**2).sum(1), (1./n)+((P/s)**2).sum(1)]
|
||||
else:
|
||||
lev = [(1./m)+((T/s)**2).sum(1), (1./n)+(P**2).sum(1)]
|
||||
# variances
|
||||
expvarx = r_[0, 100*e.cumsum()/e.sum()]
|
||||
|
||||
return {'T':T, 'P':P, 'E':E}
|
||||
return {'T':T, 'P':P, 'E':E, 'expvarx':expvarx, 'levx':lev, 'ssqx':ssq, 'aopt':aopt}
|
||||
|
||||
def pcr(a, b, aopt, scale='scores',mode='normal',center_axis=0):
|
||||
""" Principal Component Regression.
|
||||
|
||||
Performs PCR on given matrix and returns results in a dictionary.
|
||||
|
||||
:Parameters:
|
||||
a : array
|
||||
Data measurement matrix, (samples x variables)
|
||||
b : array
|
||||
Data response matrix, (samples x responses)
|
||||
aopt : int
|
||||
Number of components to use, aopt<=min(samples, variables)
|
||||
|
||||
:Returns:
|
||||
results : dict
|
||||
keys -- values, T -- scores, P -- loadings, E -- residuals,
|
||||
levx -- leverages, ssqx -- sum of squares, expvarx -- cumulative
|
||||
explained variance, aopt -- number of components used
|
||||
|
||||
:OtherParameters:
|
||||
mode : str
|
||||
Amount of info retained, ('fast', 'normal', 'detailed')
|
||||
center_axis : int
|
||||
Center along given axis. If neg.: no centering (-inf,..., matrix modes)
|
||||
|
||||
:SeeAlso:
|
||||
- pcr : other blm
|
||||
- pls : other blm
|
||||
- lpls : other blm
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
Uses kernel speed-up if m>>n or m<<n.
|
||||
|
||||
If residuals turn rank deficient, a lower number of component than given
|
||||
in input will be used. The number of components used is given in results-dict.
|
||||
|
||||
|
||||
def pcr(a, b, aopt=2, scale='scores', mode='normal'):
|
||||
"""Principal Component Regression.
|
||||
Examples
|
||||
--------
|
||||
|
||||
Returns
|
||||
>>> import scipy,engines
|
||||
>>> a=scipy.asarray([[1,2,3],[2,4,5]])
|
||||
>>> dat=engines.pca(a, 2)
|
||||
>>> dat['expvar']
|
||||
array([0.,99.8561562, 100.])
|
||||
|
||||
"""
|
||||
m, n = m_shape(a)
|
||||
B = empty((aopt, n, l))
|
||||
dat = pca(a, aopt=aopt, scale=scale, mode='normal', center_axis=0)
|
||||
k, l = m_shape(b)
|
||||
if center_axis>=0:
|
||||
b = b - expand_dims(b.mean(center_axis), center_axis)
|
||||
dat = pca(a, aopt=aopt, scale=scale, mode=mode, center_axis=center_axis)
|
||||
T = dat['T']
|
||||
weigths = apply_along_axis(vnorm, 0, T)
|
||||
weights = apply_along_axis(vnorm, 0, T)
|
||||
if scale=='loads':
|
||||
# fixme: check weights
|
||||
Q = dot(b.T, T*weights)
|
||||
Q = dot(b.T, T*weights**2)
|
||||
else:
|
||||
Q = dot(b.T, T/weights**2)
|
||||
|
||||
if mode=='fast':
|
||||
return {'T', T:, 'P':P, 'Q':Q}
|
||||
dat.update({'Q':Q})
|
||||
return dat
|
||||
if mode=='detailed':
|
||||
for i in range(1, aopt+1, 1):
|
||||
F[i,:,:] = b - dot(T[:,i],Q[:,:i].T)
|
||||
F = empty((aopt, k, l))
|
||||
for i in range(aopt):
|
||||
F[i,:,:] = b - dot(T[:,:i+1], Q[:,:i+1].T)
|
||||
else:
|
||||
F = b - dot(T, Q.T)
|
||||
#fixme: explained variance in Y + Y-var leverages
|
||||
dat.update({'Q',Q, 'F':F})
|
||||
dat.update({'Q':Q, 'F':F})
|
||||
return dat
|
||||
|
||||
def pls(a, b, aopt=2, scale='scores', mode='normal', ab=None):
|
||||
|
@ -271,7 +379,6 @@ def nipals_lpls(X, Y, Z, a_max, alpha=.7, mean_ctr=[2, 0, 1], mode='normal', sca
|
|||
X, mnX = center(X, xctr)
|
||||
Y, mnY = center(Y, xctr)
|
||||
Z, mnZ = center(Z, zctr)
|
||||
print Z.mean(1)
|
||||
|
||||
varX = pow(X, 2).sum()
|
||||
varY = pow(Y, 2).sum()
|
||||
|
@ -365,7 +472,7 @@ def nipals_lpls(X, Y, Z, a_max, alpha=.7, mean_ctr=[2, 0, 1], mode='normal', sca
|
|||
def m_shape(array):
|
||||
return matrix(array).shape
|
||||
|
||||
def esvd(data):
|
||||
def esvd(data, amax=None):
|
||||
"""SVD with the option of economy sized calculation
|
||||
Calculate subspaces of X'X or XX' depending on the shape
|
||||
of the matrix.
|
||||
|
@ -378,17 +485,30 @@ def esvd(data):
|
|||
m, n = data.shape
|
||||
if m>=n:
|
||||
kernel = dot(data.T, data)
|
||||
u, s, vt = svd(kernel)
|
||||
u = dot(data, vt.T)
|
||||
v = vt.T
|
||||
if has_sym:
|
||||
if not amax:
|
||||
amax = n
|
||||
pcrange = [n-amax, n]
|
||||
s, v = symeig(kernel, range=pcrange, overwrite=True)
|
||||
s = s[::-1]
|
||||
v = v[:,arange(n, -1, -1)]
|
||||
else:
|
||||
u, s, vt = svd(kernel)
|
||||
v = vt.T
|
||||
u = dot(data, v)
|
||||
for i in xrange(n):
|
||||
s[i] = vnorm(u[:,i])
|
||||
u[:,i] = u[:,i]/s[i]
|
||||
else:
|
||||
kernel = dot(data, data.T)
|
||||
#data = (data + data.T)/2.0
|
||||
u, s, vt = svd(kernel)
|
||||
v = dot(u.T, data)
|
||||
if has_sym:
|
||||
if not amax:
|
||||
amax = m
|
||||
pcrange = [m-amax, m]
|
||||
s, u = symeig(kernel, range=pcrange, overwrite=True)
|
||||
else:
|
||||
u, s, vt = svd(kernel)
|
||||
v = dot(u.T, data)
|
||||
for i in xrange(m):
|
||||
s[i] = vnorm(v[i,:])
|
||||
v[i,:] = v[i,:]/s[i]
|
||||
|
|
|
@ -3,32 +3,14 @@ import scipy
|
|||
import rpy
|
||||
silent_eval = rpy.with_mode(rpy.NO_CONVERSION, rpy.r)
|
||||
|
||||
def get_term_sim(termlist, method = "JiangConrath", verbose=False):
|
||||
"""Returns the similariy matrix between go-terms.
|
||||
|
||||
Arguments:
|
||||
termlist: character vector of GO terms
|
||||
method: one of
|
||||
("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin")
|
||||
verbose: print out various information or not
|
||||
"""
|
||||
_methods = ("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin")
|
||||
assert(method in _methods)
|
||||
assert(termlist[0][:2]=='GO')
|
||||
rpy.r.library("GOSim")
|
||||
return rpy.r.getTermSim(termlist, method = method, verbose = verbose)
|
||||
|
||||
def get_gene_sim(genelist, similarity='OA',
|
||||
distance="Resnick"):
|
||||
rpy.r.library("GOSim")
|
||||
rpy.r.assign("ids", genelist)
|
||||
silent_eval('a<-getGeneSim(ids)', verbose=FALSE)
|
||||
|
||||
def goterms_from_gene(genelist, ontology=['BP'], garbage = ['IEA', 'ISS', 'ND']):
|
||||
def goterms_from_gene(genelist, ontology='BP', garbage=None):
|
||||
""" Returns the go-terms from a specified genelist (Entrez id).
|
||||
|
||||
Recalculates the information content if needed based on selected evidence codes.
|
||||
|
||||
"""
|
||||
rpy.r.library("GO")
|
||||
rpy.r.library("GOSim")
|
||||
_CODES = {"IMP" : "inferred from mutant phenotype",
|
||||
"IGI" : "inferred from genetic interaction",
|
||||
"IPI" :"inferred from physical interaction",
|
||||
|
@ -42,25 +24,46 @@ def goterms_from_gene(genelist, ontology=['BP'], garbage = ['IEA', 'ISS', 'ND'])
|
|||
"IC" : "inferred by curator"
|
||||
}
|
||||
_ONTOLOGIES = ['BP', 'CC', 'MF']
|
||||
assert(scipy.all([(code in _CODES) for code in garbage]))
|
||||
assert(scipy.all([(ont in _ONTOLOGIES) for ont in ontology]))
|
||||
have_these = rpy.r('as.list(GOTERM)').keys()
|
||||
goterms = {}
|
||||
#assert(scipy.all([(code in _CODES) for code in garbage]) or garbage==None)
|
||||
assert(ontology in _ONTOLOGIES)
|
||||
dummy = rpy.r.setOntology(ontology)
|
||||
ddef = False
|
||||
if ontology=='BP' and garbage!=None:
|
||||
# This is for ont=BP and garbage =['IEA', 'ISS', 'ND']
|
||||
rpy.r.load("ICsBPIMP_IGI_IPI_ISS_IDA_IEP_TAS_NAS_IC.rda")
|
||||
ic = rpy.r.assign("IC",rpy.r.IC, envir=rpy.r.GOSimEnv)
|
||||
print len(ic)
|
||||
else:
|
||||
ic = rpy.r('get("IC", envir=GOSimEnv)')
|
||||
print "loading GO definitions environment"
|
||||
|
||||
gene2terms = {}
|
||||
for gene in genelist:
|
||||
goterms[gene] = []
|
||||
info = rpy.r('GOENTREZID2GO[["' + str(gene) + '"]]')
|
||||
#print info
|
||||
if info:
|
||||
skip=False
|
||||
for term, desc in info.items():
|
||||
if term not in have_these:
|
||||
print "GO miss:"
|
||||
print term
|
||||
if desc['Ontology'] in ontology and desc['Evidence'] not in garbage:
|
||||
goterms[gene].append(term)
|
||||
if ic.get(term)==scipy.isinf:
|
||||
print "\nIC is Inf on this GO term %s for this gene: %s" %(term,gene)
|
||||
skip=True
|
||||
if ic.get(term)==None:
|
||||
#print "\nHave no IC on this GO term %s for this gene: %s" %(term,gene)
|
||||
skip=True
|
||||
if desc['Ontology']!=ontology:
|
||||
#print "\nThis GO term %s belongs to: %s:" %(term,desc['Ontology'])
|
||||
skip = True
|
||||
if not skip:
|
||||
if gene2terms.has_key(gene):
|
||||
gene2terms[gene].append(term)
|
||||
else:
|
||||
gene2terms[gene] = [term]
|
||||
else:
|
||||
print "\nHave no Annotation on this gene: %s" %gene
|
||||
|
||||
return goterms
|
||||
return gene2terms
|
||||
|
||||
def genego_matrix(goterms, tmat, gene_ids, term_ids, func=min):
|
||||
def genego_matrix(goterms, tmat, gene_ids, term_ids, func=max):
|
||||
ngenes = len(gene_ids)
|
||||
nterms = len(term_ids)
|
||||
gene2indx = {}
|
||||
|
@ -71,23 +74,46 @@ def genego_matrix(goterms, tmat, gene_ids, term_ids, func=min):
|
|||
term2indx[id]=i
|
||||
#G = scipy.empty((nterms, ngenes),'d')
|
||||
G = []
|
||||
newindex = []
|
||||
new_gene_index = []
|
||||
for gene, terms in goterms.items():
|
||||
g_ind = gene2indx[gene]
|
||||
if len(terms)>0:
|
||||
t_ind = []
|
||||
newindex.append(g_ind)
|
||||
new_gene_index.append(g_ind)
|
||||
for term in terms:
|
||||
if term2indx.has_key(term): t_ind.append(term2indx[term])
|
||||
print t_ind
|
||||
subsim = tmat[t_ind, :]
|
||||
gene_vec = scipy.apply_along_axis(func, 0, subsim)
|
||||
G.append(gene_vec)
|
||||
|
||||
return scipy.asarray(G), newindex
|
||||
return scipy.asarray(G), new_gene_index
|
||||
|
||||
def genego_sim(gene2go, gene_ids, all_go_terms, STerm, go_term_sim="OA", term_sim="Lin", verbose=False):
|
||||
"""Returns go-terms x genes similarity matrix.
|
||||
|
||||
:input:
|
||||
- gene2go: dict: keys: gene_id, values: go_terms
|
||||
- gene_ids: list of gene ids (entrez ids)
|
||||
- STerm: (go_terms x go_terms) similarity matrix
|
||||
- go_terms_sim: similarity measure between a gene and multiple go terms (max, mean, OA)
|
||||
- term_sim: similarity measure between two go-terms
|
||||
- verbose
|
||||
"""
|
||||
rpy.r.library("GOSim")
|
||||
|
||||
#gene_ids = gene2go.keys()
|
||||
GG = scipy.empty((len(all_go_terms), len(gene_ids)), 'd')
|
||||
for j,gene in enumerate(gene_ids):
|
||||
for i,go_term in enumerate(all_go_terms):
|
||||
if verbose:
|
||||
print "\nAssigning similarity from %s to terms(gene): %s" %(go_term,gene)
|
||||
GG_ij = rpy.r.getGSim(go_term, gene2go[gene], similarity=go_term_sim,
|
||||
similarityTerm=term_sim, STerm=STerm, verbose=verbose)
|
||||
GG[i,j] = GG_ij
|
||||
return GG
|
||||
|
||||
def goterm2desc(gotermlist):
|
||||
"""Returns the go-terms description keyed by go-term
|
||||
"""Returns the go-terms description keyed by go-term.
|
||||
"""
|
||||
rpy.r.library("GO")
|
||||
term2desc = {}
|
||||
|
|
|
@ -23,7 +23,7 @@ data = DX.asarray().T
|
|||
rpy.r.assign("data", data)
|
||||
cl = dot(DY.asarray(), diag([1,2,3])).sum(1)
|
||||
rpy.r.assign("cl", cl)
|
||||
rpy.r.assign("B", 100)
|
||||
rpy.r.assign("B", 20)
|
||||
# Perform a SAM analysis.
|
||||
print "Starting SAM"
|
||||
sam = rpy.r('sam.out<-sam(data=data,cl=cl,B=B,rand=123)')
|
||||
|
@ -32,63 +32,74 @@ print "SAM done"
|
|||
qq = rpy.r('qobj<-qvalue(sam.out@p.value)')
|
||||
qvals = asarray(qq['qvalues'])
|
||||
# cut off
|
||||
co = 0.001
|
||||
index = where(qvals<0.01)[0]
|
||||
cutoff = 2
|
||||
index = where(qvals<cutoff)[0]
|
||||
|
||||
# Subset data
|
||||
X = DX.asarray()
|
||||
Xr = X[:,index]
|
||||
gene_ids = DX.get_identifiers('gene_ids', index)
|
||||
print "\nWorkiing on subset with %s genes " %len(gene_ids)
|
||||
### Build GO data ####
|
||||
print "\nWorking on subset with %s genes " %len(gene_ids)
|
||||
#gene2ind = {}
|
||||
#for i, gene in enumerate(gene_ids):
|
||||
# gene2ind[gene] = i
|
||||
|
||||
print "Go terms ..."
|
||||
goterms = rpy_go.goterms_from_gene(gene_ids)
|
||||
terms = set()
|
||||
for t in goterms.values():
|
||||
terms.update(t)
|
||||
terms = list(terms)
|
||||
print "Number of go-terms: %s" %len(terms)
|
||||
### Build GO data ####
|
||||
print "\n\nFiltering genes by Go terms "
|
||||
gene2goterms = rpy_go.goterms_from_gene(gene_ids)
|
||||
all_terms = set()
|
||||
for t in gene2goterms.values():
|
||||
all_terms.update(t)
|
||||
terms = list(all_terms)
|
||||
print "\nNumber of go-terms: %s" %len(terms)
|
||||
# update genelist
|
||||
gene_ids = gene2goterms.keys()
|
||||
print "\nNumber of genes: %s" %len(gene_ids)
|
||||
rpy.r.library("GOSim")
|
||||
# Go-term similarity matrix
|
||||
methods = ("JiangConrath","Resnik","Lin","CoutoEnriched","CoutoJiangConrath","CoutoResnik","CoutoLin")
|
||||
meth = methods[0]
|
||||
meth = methods[3]
|
||||
print "Term-term similarity matrix (method = %s)" %meth
|
||||
if meth=="CoutoEnriched":
|
||||
rpy.r('setEnrichmentFactors(alpha=0.1,beta=0.5)')
|
||||
print "Calculating term-term similarity matrix"
|
||||
tmat = rpy.r.getTermSim(terms, verbose=False, method=meth)
|
||||
print "\nCalculating term-term similarity matrix"
|
||||
|
||||
rpytmat1 = rpy.with_mode(rpy.NO_CONVERSION, rpy.r.getTermSim)(terms, method=meth,verbose=False)
|
||||
tmat1 = rpy.r.assign("haha", rpytmat1)
|
||||
|
||||
# check if all terms where found
|
||||
nanindex = where(isnan(tmat1[:,0]))[0]
|
||||
if len(nanindex)>0:
|
||||
raise valueError("NANs in tmat")
|
||||
|
||||
# Z-matrix
|
||||
#Z, newind = rpy_go.genego_matrix(terms, tmat, gene_ids, terms,func=mean)
|
||||
#Z = Z.T
|
||||
Z1 = rpy_go.genego_sim(gene2goterms,gene_ids,terms,rpytmat1,go_term_sim="OA",term_sim=meth)
|
||||
|
||||
|
||||
#### do another
|
||||
meth = methods[4]
|
||||
rpytmat = rpy.with_mode(rpy.NO_CONVERSION, rpy.r.getTermSim)(terms, method=meth,verbose=False)
|
||||
tmat = rpy.r.assign("haha", rpytmat)
|
||||
|
||||
# check if all terms where found
|
||||
nanindex = where(isnan(tmat[:,0]))[0]
|
||||
keep=[]
|
||||
has_miss = False
|
||||
if len(nanindex)>0:
|
||||
has_miss = True
|
||||
print "Some terms missing in similarity matrix"
|
||||
keep = where(isnan(tmat[:,0])!=True)[0]
|
||||
print "Number of nans: %d" %len(nanindex)
|
||||
tmat_new = tmat[:,keep][keep,:]
|
||||
new_terms = [i for ind,i in enumerate(terms) if ind in keep]
|
||||
bad_terms = [i for ind,i in enumerate(terms) if ind not in keep]
|
||||
# update go-term dict
|
||||
for gene,trm in goterms.items():
|
||||
for t in trm:
|
||||
if t in bad_terms:
|
||||
trm.remove(t)
|
||||
if len(trm)==0:
|
||||
print "Removing gene: %s" %gene
|
||||
goterms[gene]=trm
|
||||
terms = new_terms
|
||||
tmat = tmat_new
|
||||
raise valueError("NANs in tmat")
|
||||
|
||||
# Z-matrix
|
||||
# func (min, max, median, mean, etc),
|
||||
# func decides on the representation of gene-> goterm when multiple
|
||||
# goterms exist for one gene
|
||||
Z, newind = rpy_go.genego_matrix(goterms, tmat, gene_ids, terms,func=mean)
|
||||
Z = Z.T
|
||||
# update X matrix (no go-terms available)
|
||||
Xr = Xr[:,newind]
|
||||
new_gene_ids = asarray(gene_ids)[newind]
|
||||
#Z, newind = rpy_go.genego_matrix(terms, tmat, gene_ids, terms,func=mean)
|
||||
#Z = Z.T
|
||||
Z = rpy_go.genego_sim(gene2goterms,gene_ids,terms,rpytmat,go_term_sim="OA",term_sim=meth)
|
||||
|
||||
|
||||
|
||||
# update data (X) matrix
|
||||
#newind = [gene2ind[gene] for gene in gene_ids]
|
||||
newind = DX.get_indices('gene_ids', gene_ids)
|
||||
Xr = X[:,newind]
|
||||
#new_gene_ids = asarray(gene_ids)[newind]
|
||||
|
||||
|
||||
######## LPLSR ########
|
||||
|
@ -112,11 +123,14 @@ if alpha_check:
|
|||
rmsep , yhat, ce = cv_lpls(Xr, Y, Z, a_max, alpha=alpha)
|
||||
Rmsep.append(rmsep)
|
||||
Yhat.append(yhat)
|
||||
CE.append(yhat)
|
||||
CE.append(ce)
|
||||
Rmsep = asarray(Rmsep)
|
||||
Yhat = asarray(Yhat)
|
||||
CE = asarray(CE)
|
||||
|
||||
figure(200)
|
||||
|
||||
|
||||
|
||||
# Significance Hotellings T
|
||||
Wx, Wz, Wy, = jk_lpls(Xr, Y, Z, aopt)
|
||||
|
@ -135,7 +149,13 @@ for a in range(m):
|
|||
ylim([rmsep.min()-.05, rmsep.max()+.05])
|
||||
title('RMSEP')
|
||||
|
||||
figure(2) # Hypoid correlations
|
||||
figure(2)
|
||||
for a in range(m):
|
||||
bar(arange(a_max)+a*bar_w+.1, class_error[:,a], width=bar_w, color=bar_col[a])
|
||||
ylim([class_error.min()-.05, class_error.max()+.05])
|
||||
title('Classification accuracy')
|
||||
|
||||
figure(3) # Hypoid correlations
|
||||
plot_corrloads(Rz, pc1=0, pc2=1, s=tsqz/10.0, c='b', zorder=5, expvar=evz, ax=None)
|
||||
ax = gca()
|
||||
ylabels = DY.get_identifiers('_cat', sorted=True)
|
||||
|
|
Reference in New Issue