Multiple lib changes

This commit is contained in:
2007-01-25 11:58:10 +00:00
parent a65d79697f
commit 1c2c2c8895
7 changed files with 519 additions and 152 deletions

View File

@@ -1,30 +1,33 @@
"""This module implements some common validation schemes from pca and pls.
"""
from scipy import ones,mean,sqrt,dot,newaxis,zeros,sum,empty,\
apply_along_axis,eye, kron
apply_along_axis,eye,kron,array,sort
from scipy.stats import median
from scipy.linalg import triu,inv,svd,norm
from select_generators import w_pls_gen,w_pls_gen_jk,pls_gen,pca_gen,diag_pert
from engines import w_simpls,pls, bridge,pca
from pylab import *
from engines import w_simpls,pls,bridge,pca
from cx_utils import m_shape
def w_pls_cv_val(X, Y, amax, n_blocks=None, algo='simpls'):
"""RMSEP calc for pls with wide X.
"""Returns and RMSEP for pls tailored for wide X.
"""
k, l = Y.shape
k, l = m_shape(Y)
PRESS = zeros((l, amax+1), dtype='f')
# X,Y are centered
# X,Y are centered0
if n_blocks==None:
n_blocks = Y.shape[0]
V = w_pls_gen(dot(X, X.T), Y, n_blocks=n_blocks, center=True)
XXt = dot(X, X.T)
V = w_pls_gen(XXt, Y, n_blocks=n_blocks, center=True)
for Din, Doi, Yin, Yout in V:
ym = -sum(Yout, 0)[newaxis]/(1.0*Yin.shape[0])
Yin = Yin - ym
PRESS[:,0] = PRESS[:,0] + ((Yout - ym)**2).sum(0)
if algo=='simpls':
dat = w_simpls(Din, Yin, amax)
Q,U,H = dat['Q'], dat['U'], dat['H']
Q, U, H = dat['Q'], dat['U'], dat['H']
That = dot(Doi, dot(U, inv(triu(dot(H.T,U))) ))
else:
"Other algo-support comming soon"
raise NotImplementedError
#Yhat = empty((amax, k, l),dtype='<f8')
Yhat = []
@@ -34,13 +37,14 @@ def w_pls_cv_val(X, Y, amax, n_blocks=None, algo='simpls'):
E = E + sum(E, 0)/Din.shape[0]
PRESS[j,1:] = PRESS[j,1:] + sum(E**2, 0)
#Yhat = Y - dot(That,Q.T)
return sqrt(PRESS/Y.shape[0])
rmsep = sqrt(PRESS/Y.shape[0])
aopt = find_aopt_from_sep(rmsep)
return rmsep, aopt
def pls_val(X, Y, amax=2, n_blocks=10,algo='pls'):
""" Validation results of pls model.
"""
k, l = Y.shape
"""
k, l = m_shape(Y)
PRESS = zeros((l, amax+1), dtype='<f8')
EE = zeros((amax, k, l), dtype='<f8')
Yhat = zeros((amax, k, l), dtype='<f8')
@@ -50,6 +54,7 @@ def pls_val(X, Y, amax=2, n_blocks=10,algo='pls'):
ym = -sum(Yout,0)[newaxis]/Yin.shape[0]
Yin = (Yin - ym)
PRESS[:,0] = PRESS[:,0] + ((Yout - ym)**2).sum(0)
if algo=='pls':
dat = pls(Xin, Yin, amax, mode='normal')
elif algo=='bridge':
@@ -62,9 +67,11 @@ def pls_val(X, Y, amax=2, n_blocks=10,algo='pls'):
EE[a,out,:] = E
PRESS[:,a+1] = PRESS[:,a+1] + sum(E**2,0)
return sqrt(PRESS/(k-1.)), EE, Yhat
rmsep = sqrt(PRESS/(k-1.))
aopt = find_aopt_from_sep(rmsep)
return rmsep, aopt
def pca_alter_val(a, amax, n_sets=10,method='diag'):
def pca_alter_val(a, amax, n_sets=10, method='diag'):
"""Pca validation by altering elements in X.
"""
# todo: it is just as easy to do jk-estimates her as well
@@ -79,18 +86,27 @@ def pca_alter_val(a, amax, n_sets=10,method='diag'):
EE = a_sub - Xhat.ravel().take(ind)
tot = (a_sub**2).sum()
sep[i,j] = (EE**2).sum()/tot
return sqrt(sep.mean(0))
#return sep
sep = sqrt(sep)
aopt = find_aopt_from_sep(sep)
return sep, aopt
def pca_cv_val(X, amax, n_sets):
""" Cross validation of pca using random sets crossval.
def pca_cv_val(a, amax, n_sets):
""" Returns PRESS from cross-validated pca using random segments.
input:
-- a, data matrix (m x n)
-- amax, maximum nuber of components used
-- n_sets, number of segments to calculate
output:
-- sep, (amax x m x n), squared error of prediction (press)
-- aopt, guestimated optimal number of components
"""
m, n = X.shape
xtot = (X**2).sum()
V = pca_gen(X, n_sets=7, center=True, index_out=True)
m, n = a.shape
E = empty((amax, m, n), dtype='f')
for xi,xout,ind in V:
dat_i = pca(xi, amax, mode='detailed')
xtot = (a**2).sum() # this needs centering
V = pca_gen(a, n_sets=7, center=True, index_out=True)
for xi, xout, ind in V:
dat_i = pca(xi, amax, mode='fast')
Pi = dat_i['P']
for a in xrange(amax):
Pia = Pi[:,:a+1]
@@ -99,7 +115,9 @@ def pca_cv_val(X, amax, n_sets):
sep = []
for a in xrange(amax):
sep.append(E[a].sum()/xtot)
return sqrt(sep.mean(0))
sep = array(sep)
aopt = find_aopt_from_sep(sep)
return sep, aopt
def pls_jkW(a, b, amax, n_blocks=None, algo='pls', use_pack=True):
""" Returns CV-segments of paramter W for wide X.
@@ -128,7 +146,20 @@ def pls_jkW(a, b, amax, n_blocks=None, algo='pls', use_pack=True):
return WW
def pca_jkP(a, aopt, n_blocks=None):
""" Returns CV-segments of paramter P.
"""Returns loading from PCA on CV-segments.
input:
-- a, data matrix (n x m)
-- aopt, number of components in model.
-- nblocks, number of segments
output:
-- PP, loadings collected in a three way matrix
(n_segments, m, aopt)
comments:
* The loadings are scaled with the (1/samples)*eigenvalues.
* Crossvalidation method is currently set to random blocks of samples.
todo: add support for T
fixme: more efficient to add this in validation loop
"""
@@ -138,8 +169,30 @@ def pca_jkP(a, aopt, n_blocks=None):
PP = empty((n_blocks, a.shape[1], aopt), dtype='f')
V = pca_gen(a, n_sets=n_blocks, center=True)
for nn,(a_in, a_out) in enumerate(V):
dat = pca(a_in, aopt, mode='fast')
dat = pca(a_in, aopt, mode='fast', scale='loads')
P = dat['P']
PP[nn,:,:] = P
return PP
def find_aopt_from_sep(sep, method='75perc'):
"""Returns an estimate of optimal number of components from rmsecv.
"""
if method=='vanilla':
# min rmsep
rmsecv = sqrt(sep.mean(0))
return rmsecv.argmin() + 1
elif method=='75perc':
prct = .75 #percentile
ind = 1.*sep.shape[0]*prct
med = median(sep)
prc_75 = []
for col in sep.T:
col.sort()
prc_75.append(col[int(ind)])
prc_75 = array(prc_75)
for i in range(1, sep.shape[1], 1):
if med[i-1]<prc_75[i]:
return i
return len(med)