Multiple lib changes

This commit is contained in:
2007-01-25 11:58:10 +00:00
parent a65d79697f
commit 1c2c2c8895
7 changed files with 519 additions and 152 deletions

View File

@@ -30,22 +30,14 @@ def w_pls_gen(aat,b,n_blocks=None,center=True,index_out=False):
b_in = b[inn,:]
b_out = b[out,:]
if center:
# centering projector: I - (1/n)11'
# nin = len(inn)
# Pc = eye(nin) - outer(ones((nin,)),ones((nin,)))/nin
# xxt - x( outer(ones((nin,)),ones((nin,)))/nin ) x.T
# de jong:
h = sum(aat_in,0)[ :,newaxis]
h = (h - mean(h)/2)/len(inn)
mn_a = h + h.T
aat_in = aat_in - mn_a
aat_in, mn = outerprod_centering(aat_in)
aat_out = aat_out - mn
if index_out:
yield aat_in,aat_out,b_in,b_out,out
else:
yield aat_in,aat_out,b_in,b_out
def pls_gen(a,b, n_blocks=None, center=False, index_out=False,axis=0):
def pls_gen(a, b, n_blocks=None, center=False, index_out=False,axis=0, metric=None):
"""Random block crossvalidation
Leave-one-out is a subset, with n_blocks equals a.shape[-1]
"""
@@ -56,17 +48,38 @@ def pls_gen(a,b, n_blocks=None, center=False, index_out=False,axis=0):
out_ind_sets = [index[i*n_in_set:(i+1)*n_in_set] for i in range(n_blocks)]
for out in out_ind_sets:
inn = [i for i in index if i not in out]
acal = a.take(inn, 0)
atrue = a.take(out, 0)
bcal = b.take(inn, 0)
btrue = b.take(out, 0)
if center:
a = a - mean(a,0)[newaxis]
b = b - mean(b,0)[newaxis]
mn_a = acal.mean(0)[newaxis]
acal = acal - mn_a
atrue = atrue - mn_a
mn_b = bcal.mean(0)[newaxis]
bcal = bcal - mn_b
btrue = btrue - mn_b
if metric!=None:
acal = dot(acal, metric)
if index_out:
yield a.take(inn,0),a.take(out,0), b.take(inn,0),b.take(out,0),out
yield acal, atrue, bcal, btrue, out
else:
yield a.take(inn,0),a.take(out,0), b.take(inn,0),b.take(out,0)
yield acal, atrue, bcal, btrue
def pca_gen(a,n_sets=None, center=False, index_out=False,axis=0):
"""PCA random block crossval generator.
def pca_gen(a, n_sets=None, center=False, index_out=False, axis=0):
"""Returns a generator of crossvalidation sample segments.
input:
-- a, data matrix (m x n)
-- n_sets, number of segments/subsets to generate.
-- center, bool, choice of centering each subset
-- index_out, bool, return subset index
-- axis, int, which axis to get subset from
ouput:
-- V, generator with (n_sets) memebers (subsets)
"""
m = a.shape[axis]
index = randperm(m)
@@ -76,21 +89,26 @@ def pca_gen(a,n_sets=None, center=False, index_out=False,axis=0):
out_ind_sets = [index[i*n_in_set:(i+1)*n_in_set] for i in range(n_sets)]
for out in out_ind_sets:
inn = [i for i in index if i not in out]
acal = a.take(inn, 0)
atrue = a.take(out, 0)
if center:
a = a - mean(a,0)[newaxis]
mn_a = acal.mean(0)[newaxis]
acal = acal - mn_a
atrue = atrue - mn_a
if index_out:
yield a.take(inn,0),a.take(out,0),out
else:
yield a.take(inn,0),a.take(out,0)
yield acal, atrue, out
else:
yield acal, atrue
def w_pls_gen_jk(a,b,n_sets=None,center=True,index_out=False,axis=0):
def w_pls_gen_jk(a, b, n_sets=None, center=True,
index_out=False, axis=0):
"""Random block crossvalidation for wide X (m>>n)
Leave-one-out is a subset, with n_sets equals a.shape[-1]
Returns : X_m and X_m'Y_m
"""
m = a.shape[axis]
ab = dot(a.T,b)
ab = dot(a.T, b)
index = randperm(m)
if n_sets==None:
n_sets = m
@@ -103,19 +121,18 @@ def w_pls_gen_jk(a,b,n_sets=None,center=True,index_out=False,axis=0):
a_in = a[inn,:]
mn_a = 0
mAB = 0
if center:
mn_a = mean(a,0)[newaxis]
mAin = dot(-ones((1,nout)),a[out,:])/nin
mBin = dot(-ones((1,nout)),b[out,:])/nin
mAB = dot(mAin.T,(mBin*nin))
ab_in = ab - dot(a[out,].T,b[out,:]) - mAB
mn_a = a_in.mean(0)[newaxis]
mAin = dot(-ones((1,nout)), a[out,:])/nin
mBin = dot(-ones((1,nout)), b[out,:])/nin
mAB = dot(mAin.T, (mBin*nin))
ab_in = ab - dot(a[out,].T, b[out,:]) - mAB
a_in = a_in - mn_a
if index_out:
yield ain,ab, out
yield a_in, ab_in, out
else:
yield a_in, ab
yield a_in, ab_in
def shuffle_1d_block(a, n_sets=None, blocks=None, index_out=False, axis=0):
"""Random block shuffling along 1d axis
@@ -185,3 +202,19 @@ def diag_pert(a, n_sets=10, center=True, index_out=False):
yield a_out, asarray(out)
else:
yield a_out
def outerprod_centering(aat, ret_mn=True):
"""Returns mean centered symmetric outerproduct matrix.
"""
n = aat.shape[0]
h = aat.sum(0)[:,newaxis]
h = (h - mean(h)/2)/n
mn_a = h + h.T
aatc = aat - mn_a
if ret_mn:
return aatc, aat.mean(0)
return aat - mn_a