Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0

confidence

This commit is contained in:
Arnar Flatberg 2007-07-23 18:07:10 +00:00
parent 939dba20ee
commit 05274b4f0b
5 changed files with 41 additions and 81 deletions

View File

@ -390,7 +390,7 @@ class LPLS(Model):
""" """
aopt = self.model['aopt'] aopt = self.model['aopt']
if opt['calc_conf']: if opt['calc_conf']:
Wx, Wz = lpls_jk(self.model['X'], self.model['Y'], self.model['Z'], aopt, n_sets) Wx, Wz = lpls_jk(self._data['X'], self._data['Y'], self._data['Z'], aopt, opt['n_sets'], opt['xz_alpha'])
Wcal = self.model['W'][:,:aopt] Wcal = self.model['W'][:,:aopt]
Lcal = self.model['L'][:,:aopt] Lcal = self.model['L'][:,:aopt]
# ensure that Wcal is scaled # ensure that Wcal is scaled
@ -669,8 +669,8 @@ class LplsOptions(Options):
opt['center'] = True opt['center'] = True
opt['center_mth'] = [2, 0, 1] opt['center_mth'] = [2, 0, 1]
opt['scale'] = 'scores' opt['scale'] = 'scores'
opt['calc_conf'] = False opt['calc_conf'] = True
opt['n_sets'] = 7 opt['n_sets'] = 20
opt['strict'] = False opt['strict'] = False
opt['p_center'] = 'med' opt['p_center'] = 'med'
opt['alpha'] = .3 opt['alpha'] = .3
@ -698,8 +698,8 @@ class LplsOptions(Options):
(blmplots.LplsHypoidCorrelationPlot, 'Hypoid corr.', False) (blmplots.LplsHypoidCorrelationPlot, 'Hypoid corr.', False)
] ]
opt['out_data'] = ['T','P'] opt['out_data'] = ['T','P', 'tsqx']
opt['out_plots'] = [blmplots.PlsScorePlot,blmplots.PlsLoadingPlot,blmplots.LineViewXc] opt['out_plots'] = [blmplots.PlsScorePlot,blmplots.LplsXLoadingPlot,blmplots.LplsZLoadingPlot, blmplots.LineViewXc]
#opt['out_data'] = None #opt['out_data'] = None

View File

@ -190,6 +190,15 @@ class PlsCorrelationLoadingPlot(BlmScatterPlot):
title = "Pls correlation loadings (%s)" %model._dataset['X'].get_name() title = "Pls correlation loadings (%s)" %model._dataset['X'].get_name()
BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='CP') BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='CP')
class LplsXLoadingPlot(BlmScatterPlot):
def __init__(self, model, absi=0, ordi=1):
title = "Lpls x-loadings (%s)" %model._dataset['X'].get_name()
BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='P', color_by='tsqx')
class LplsZLoadingPlot(BlmScatterPlot):
def __init__(self, model, absi=0, ordi=1):
title = "Lpls z-loadings (%s)" %model._dataset['Z'].get_name()
BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='L', color_by='tsqz')
class LplsHypoidCorrelationPlot(BlmScatterPlot): class LplsHypoidCorrelationPlot(BlmScatterPlot):
def __init__(self, model, absi=0, ordi=1): def __init__(self, model, absi=0, ordi=1):

View File

@ -219,7 +219,7 @@ def bridge(a, b, aopt, scale='scores', mode='normal', r=0):
def nipals_lpls(X, Y, Z, amax, alpha=.7, mean_ctr=[2, 0, 1], mode='normal', scale='scores', verbose=False): def nipals_lpls(X, Y, Z, a_max, alpha=.7, mean_ctr=[2, 0, 1], mode='normal', scale='scores', verbose=False):
""" L-shaped Partial Least Sqaures Regression by the nipals algorithm. """ L-shaped Partial Least Sqaures Regression by the nipals algorithm.
(X!Z)->Y (X!Z)->Y
@ -260,18 +260,18 @@ def nipals_lpls(X, Y, Z, amax, alpha=.7, mean_ctr=[2, 0, 1], mode='normal', scal
u, o = Z.shape u, o = Z.shape
# initialize # initialize
U = empty((k, amax)) U = empty((k, a_max))
Q = empty((l, amax)) Q = empty((l, a_max))
T = empty((m, amax)) T = empty((m, a_max))
W = empty((n, amax)) W = empty((n, a_max))
P = empty((n, amax)) P = empty((n, a_max))
K = empty((o, amax)) K = empty((o, a_max))
L = empty((u, amax)) L = empty((u, a_max))
var_x = empty((amax,)) var_x = empty((a_max,))
var_y = empty((amax,)) var_y = empty((a_max,))
var_z = empty((amax,)) var_z = empty((a_max,))
for a in range(amax): for a in range(a_max):
if verbose: if verbose:
print "\n Working on comp. %s" %a print "\n Working on comp. %s" %a
u = Y[:,:1] u = Y[:,:1]

View File

@ -6,7 +6,7 @@ from scipy.stats import median
from scipy.linalg import triu,inv,svd,norm from scipy.linalg import triu,inv,svd,norm
from select_generators import w_pls_gen,w_pls_gen_jk,pls_gen,pca_gen,diag_pert from select_generators import w_pls_gen,w_pls_gen_jk,pls_gen,pca_gen,diag_pert
from engines import w_simpls,pls,bridge,pca from engines import w_simpls,pls,bridge,pca,nipals_lpls
from cx_utils import m_shape from cx_utils import m_shape
def w_pls_cv_val(X, Y, amax, n_blocks=None, algo='simpls'): def w_pls_cv_val(X, Y, amax, n_blocks=None, algo='simpls'):
@ -111,15 +111,17 @@ def pls_val(X, Y, amax=2, n_blocks=10, algo='pls', metric=None):
def lpls_val(X, Y, Z, a_max=2, nsets=None,alpha=.5): def lpls_val(X, Y, Z, a_max=2, nsets=None,alpha=.5):
"""Performs crossvalidation to get generalisation error in lpls""" """Performs crossvalidation to get generalisation error in lpls"""
cv_iter = select_generators.pls_gen(X, Y, n_blocks=nsets,center=False,index_out=True) cv_iter = pls_gen(X, Y, n_blocks=nsets,center=False,index_out=True)
k, l = Y.shape k, l = Y.shape
Yhat = empty((a_max,k,l), 'd') Yhat = empty((a_max,k,l), 'd')
for i, (xcal,xi,ycal,yi,ind) in enumerate(cv_iter): for i, (xcal,xi,ycal,yi,ind) in enumerate(cv_iter):
T, W, P, Q, U, L, K, B, b0, evx, evy, evz = nipals_lpls(xcal,ycal,Z, dat = nipals_lpls(xcal,ycal,Z,
a_max=a_max, a_max=a_max,
alpha=alpha, alpha=alpha,
mean_ctr=[2,0,1], mean_ctr=[2,0,1],
verbose=False) verbose=False)
B = dat['B']
b0 = dat['b0']
for a in range(a_max): for a in range(a_max):
Yhat[a,ind,:] = b0[a][0][0] + dot(xi, B[a]) Yhat[a,ind,:] = b0[a][0][0] + dot(xi, B[a])
Yhat_class = zeros_like(Yhat) Yhat_class = zeros_like(Yhat)
@ -135,9 +137,6 @@ def lpls_val(X, Y, Z, a_max=2, nsets=None,alpha=.5):
def pca_alter_val(a, amax, n_sets=10, method='diag'): def pca_alter_val(a, amax, n_sets=10, method='diag'):
"""Pca validation by altering elements in X. """Pca validation by altering elements in X.
comments: comments:
-- may do all jk estimates in this loop -- may do all jk estimates in this loop
""" """
@ -250,7 +249,7 @@ def pca_jkP(a, aopt, n_blocks=None, metric=None):
def lpls_jk(X, Y, Z, a_max, nsets=None, alpha=.5): def lpls_jk(X, Y, Z, a_max, nsets=None, alpha=.5):
cv_iter = select_generators.pls_gen(X, Y, n_blocks=nsets,center=False,index_out=False) cv_iter = pls_gen(X, Y, n_blocks=nsets,center=False,index_out=False)
m, n = X.shape m, n = X.shape
k, l = Y.shape k, l = Y.shape
o, p = Z.shape o, p = Z.shape
@ -260,15 +259,11 @@ def lpls_jk(X, Y, Z, a_max, nsets=None, alpha=.5):
WWz = empty((nsets, o, a_max), 'd') WWz = empty((nsets, o, a_max), 'd')
#WWy = empty((nsets, l, a_max), 'd') #WWy = empty((nsets, l, a_max), 'd')
for i, (xcal,xi,ycal,yi) in enumerate(cv_iter): for i, (xcal,xi,ycal,yi) in enumerate(cv_iter):
T, W, P, Q, U, L, K, B, b0, evx, evy, evz = nipals_lpls(xcal,ycal,Z, dat = nipals_lpls(xcal,ycal,Z,a_max=a_max,alpha=alpha,
a_max=a_max, mean_ctr=[2,0,1],scale='loads',verbose=False)
alpha=alpha, WWx[i,:,:] = dat['W']
mean_ctr=[2,0,1], WWz[i,:,:] = dat['L']
scale='loads', #WWy[i,:,:] = dat['Q']
verbose=False)
WWx[i,:,:] = W
WWz[i,:,:] = L
#WWy[i,:,:] = Q
return WWx, WWz return WWx, WWz

View File

@ -1,44 +0,0 @@
def smdb_annot(orflist=None, input_fname='registry.genenames.tab', output_fname='yeast.annot'):
"""Reads registry.genenames.tab from the Stanford yeast
microarray database.
Available from:
ftp://genome-ftp.stanford.edu/pub/yeast/data_download/gene_registry/registry.genenames.tab
input: orf -- list of orfs (open reading frames)
file -- (optional) file to fetch info from
registry.genames contains:
0 = Locus name
1 = Other name
2 = Description
3 = Gene product
4 = Phenotype
5 = ORF name
6 = SGDID
NB! Other name, Gene product and Phenotype may have more
than one mapping. These are separated by |
Output: writes an annotation file
"""
outfile = open(output_fname, 'w')
header = "Orf\tLocus_id\tOther_name\tDescription\tGene_product\tPhenotype\tSGD_ID\n"
outfile.write(header)
text = open(input_fname, 'r').read().splitlines()
for line in text:
els = line.split('\t')
orf_name = els.pop(5)
if orf_name!='': # we dont care about non-named orfs
if orflist and orf_name not in orflist:
break
for e in els:
if e !='':
outfile.write(str(e) + "\t")
else:
outfile.write("NA")
f.write("\n")