This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/fluents/lib/blmplots.py

189 lines
6.4 KiB
Python
Raw Normal View History

2006-12-18 12:59:12 +01:00
"""Specialised plots for functions defined in blmfuncs.py.
fixme:
-- Im normalsing all color mapping input vectors to [0,1]. This will
destroy informative numerical values in colorbar (but we
are not showing these anyway). A better fix would be to let the
colorbar listen to the scalarmappable instance and corect itself, but
I did not get that to work ...
fixme2:
-- If scatterplot is not inited with a colorvector there will be no
colorbar, but when adding colors the colorbar shoud be created.
"""
from fluents import plots
2007-01-25 12:58:10 +01:00
from scipy import dot,sum,diag,arange,log,mean,newaxis,sqrt
2006-12-18 12:59:12 +01:00
from matplotlib import cm
2007-01-25 12:58:10 +01:00
import pylab as PB
2006-12-18 12:59:12 +01:00
class PcaScorePlot(plots.ScatterPlot):
"""PCA Score plot"""
def __init__(self, model, absi=0, ordi=1):
self._T = model.model['T']
dataset_1 = model.as_dataset('T')
dataset_2 = dataset_1
id_dim = dataset_1.get_dim_name(0)
sel_dim = dataset_1.get_dim_name(1)
id_1, = dataset_1.get_identifiers(sel_dim, [absi])
id_2, = dataset_1.get_identifiers(sel_dim, [ordi])
plots.ScatterPlot.__init__(self, dataset_1, dataset_2, id_dim, sel_dim, id_1, id_2 ,c='b' ,s=40 , name='pca-scores')
2007-01-25 12:58:10 +01:00
def set_absicca(self, n):
2006-12-18 12:59:12 +01:00
self.xaxis_data = self._T[:,n]
2007-01-25 12:58:10 +01:00
def set_ordinate(self, n):
2006-12-18 12:59:12 +01:00
self.yaxis_data = self._T[:,n]
class PcaLoadingPlot(plots.ScatterPlot):
"""PCA Loading plot"""
def __init__(self, model, absi=0, ordi=1):
self._P = model.model['P']
dataset_1 = model.as_dataset('P')
dataset_2 = dataset_1
id_dim = dataset_1.get_dim_name(0)
sel_dim = dataset_1.get_dim_name(1)
id_1, = dataset_1.get_identifiers(sel_dim, [absi])
id_2, = dataset_1.get_identifiers(sel_dim, [ordi])
if model.model.has_key('p_tsq'):
col = model.model['p_tsq'].ravel()
col = normalise(col)
else:
col = 'g'
plots.ScatterPlot.__init__(self, dataset_1, dataset_2, id_dim, sel_dim, id_1, id_2,c=col,s=20, name='pls-loadings')
2007-01-25 12:58:10 +01:00
def set_absicca(self, n):
2006-12-18 12:59:12 +01:00
self.xaxis_data = self._P[:,n]
2007-01-25 12:58:10 +01:00
def set_ordinate(self, n):
2006-12-18 12:59:12 +01:00
self.yaxis_data = self._P[:,n]
class PlsScorePlot(plots.ScatterPlot):
"""PLS Score plot"""
2007-01-25 12:58:10 +01:00
def __init__(self, model, absi=0, ordi=1):
2006-12-18 12:59:12 +01:00
self._T = model.model['T']
dataset_1 = model.as_dataset('T')
dataset_2 = dataset_1
id_dim = dataset_1.get_dim_name(0)
sel_dim = dataset_1.get_dim_name(1)
id_1, = dataset_1.get_identifiers(sel_dim, [absi])
id_2, = dataset_1.get_identifiers(sel_dim, [ordi])
plots.ScatterPlot.__init__(self, dataset_1, dataset_2,
id_dim, sel_dim, id_1, id_2 ,
c='b' ,s=40 , name='pls-scores')
2007-01-25 12:58:10 +01:00
def set_absicca(self, n):
2006-12-18 12:59:12 +01:00
self.xaxis_data = self._T[:,n]
2007-01-25 12:58:10 +01:00
def set_ordinate(self, n):
2006-12-18 12:59:12 +01:00
self.yaxis_data = self._T[:,n]
class PlsLoadingPlot(plots.ScatterPlot):
"""PLS Loading plot"""
2007-01-25 12:58:10 +01:00
def __init__(self, model, absi=0, ordi=1):
2006-12-18 12:59:12 +01:00
self._P = model.model['P']
dataset_1 = model.as_dataset('P')
dataset_2 = dataset_1
id_dim = dataset_1.get_dim_name(0)
sel_dim = dataset_1.get_dim_name(1)
id_1, = dataset_1.get_identifiers(sel_dim, [absi])
id_2, = dataset_1.get_identifiers(sel_dim, [ordi])
if model.model.has_key('w_tsq'):
col = model.model['w_tsq'].ravel()
col = normalise(col)
else:
col = 'g'
plots.ScatterPlot.__init__(self, dataset_1, dataset_2,
id_dim, sel_dim, id_1, id_2,
c=col, s=20, name='loadings')
2007-01-25 12:58:10 +01:00
def set_absicca(self, n):
2006-12-18 12:59:12 +01:00
self.xaxis_data = self._P[:,n]
2007-01-25 12:58:10 +01:00
def set_ordinate(self, n):
2006-12-18 12:59:12 +01:00
self.yaxis_data = self._T[:,n]
2007-01-25 12:58:10 +01:00
2006-12-18 12:59:12 +01:00
class LineViewXc(plots.LineViewPlot):
"""A line view of centered raw data
"""
2007-01-25 12:58:10 +01:00
def __init__(self, model, name='Profiles'):
2006-12-18 12:59:12 +01:00
# copy, center, plot
2007-01-25 12:58:10 +01:00
x = model._dataset['X'].copy()
2006-12-18 12:59:12 +01:00
x._array = x._array - mean(x._array,0)[newaxis]
plots.LineViewPlot.__init__(self, x, 1, None, name)
2007-01-25 12:58:10 +01:00
2006-12-18 12:59:12 +01:00
class ParalellCoordinates(plots.Plot):
"""Parallell coordinates for score loads with many comp.
"""
2007-01-25 12:58:10 +01:00
def __init__(self, model, p='loads'):
2006-12-18 12:59:12 +01:00
pass
2007-01-25 12:58:10 +01:00
2006-12-18 12:59:12 +01:00
class PlsQvalScatter(plots.ScatterPlot):
"""A vulcano like plot of loads vs qvals
"""
2007-01-25 12:58:10 +01:00
def __init__(self, model, pc=0):
if not model.model.has_key('w_tsq'):
2006-12-18 12:59:12 +01:00
return
2007-01-25 12:58:10 +01:00
self._W = model.model['P']
dataset_1 = model.as_dataset('P')
dataset_2 = model.as_dataset('w_tsq')
2006-12-18 12:59:12 +01:00
id_dim = dataset_1.get_dim_name(0) #genes
sel_dim = dataset_1.get_dim_name(1) #_comp
sel_dim_2 = dataset_2.get_dim_name(1) #_zero_dim
id_1, = dataset_1.get_identifiers(sel_dim, [0])
id_2, = dataset_2.get_identifiers(sel_dim_2, [0])
2007-01-25 12:58:10 +01:00
if model.model.has_key('w_tsq'):
col = model.model['w_tsq'].ravel()
2006-12-18 12:59:12 +01:00
col = normalise(col)
else:
col = 'g'
plots.ScatterPlot.__init__(self, dataset_1, dataset_2,
id_dim, sel_dim, id_1, id_2,
c=col, s=20, sel_dim_2=sel_dim_2,
name='Load Volcano')
2007-01-25 12:58:10 +01:00
class PredictionErrorPlot(plots.Plot):
"""A boxplot of prediction error vs. comp. number.
"""
def __init__(self, model, name="Pred. Err."):
if not model.model.has_key('sep'):
logger.log('notice', 'Model has no calculations of sep')
return
plots.Plot.__init__(self, name)
self._frozen = True
self.current_dim = 'johndoe'
self.ax = self.fig.add_subplot(111)
# draw
sep = model.model['sep']
aopt = model.model['aopt']
bx_plot_lines = self.ax.boxplot(sqrt(sep))
aopt_marker = self.ax.axvline(aopt, linewidth=10,
color='r',zorder=0,
alpha=.5)
# add canvas
self.add(self.canvas)
self.canvas.show()
2006-12-18 12:59:12 +01:00
2007-01-25 12:58:10 +01:00
def set_current_selection(self, selection):
pass
2006-12-18 12:59:12 +01:00
class InfluencePlot(plots.ScatterPlot):
"""
"""
pass
def normalise(x):
"""Scale vector x to [0,1]
"""
x = x - x.min()
x = x/x.max()
return x