This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/fluents/lib/blmplots.py

298 lines
10 KiB
Python
Raw Normal View History

2006-12-18 12:59:12 +01:00
"""Specialised plots for functions defined in blmfuncs.py.
fixme:
-- If scatterplot is not inited with a colorvector there will be no
colorbar, but when adding colors the colorbar shoud be created.
"""
2007-03-14 17:17:21 +01:00
2006-12-18 12:59:12 +01:00
from matplotlib import cm
2007-01-31 13:59:21 +01:00
import gtk
2007-03-14 17:17:21 +01:00
import fluents
from fluents import plots
import scipy
from scipy import dot,sum,diag,arange,log,mean,newaxis,sqrt,apply_along_axis
2007-01-31 13:59:21 +01:00
class BlmScatterPlot(plots.ScatterPlot):
"""Scatter plot used for scores and loadings in bilinear models."""
def __init__(self, title, model, absi=0, ordi=1, part_name='T', color_by=None):
if model.model.has_key(part_name)!=True:
raise ValueError("Model part: %s not found in model" %mod_param)
self._T = model.model[part_name]
if self._T.shape[1]==1:
logger.log('notice', 'Scores have only one component')
absi= ordi = 0
self._absi = absi
self._ordi = ordi
2007-03-14 17:17:21 +01:00
self._cmap = cm.jet
2007-01-31 13:59:21 +01:00
dataset_1 = model.as_dataset(part_name)
2006-12-18 12:59:12 +01:00
id_dim = dataset_1.get_dim_name(0)
sel_dim = dataset_1.get_dim_name(1)
id_1, = dataset_1.get_identifiers(sel_dim, [absi])
id_2, = dataset_1.get_identifiers(sel_dim, [ordi])
2007-01-31 13:59:21 +01:00
col = 'b'
if model.model.has_key(color_by):
col = model.model[color_by].ravel()
plots.ScatterPlot.__init__(self, dataset_1, dataset_1, id_dim, sel_dim, id_1, id_2 ,c=col ,s=40 , name=title)
2007-03-14 17:17:21 +01:00
self._mappable.set_cmap(self._cmap)
self.sc = self._mappable
2007-01-31 13:59:21 +01:00
self.add_pc_spin_buttons(self._T.shape[1], absi, ordi)
2007-03-14 17:17:21 +01:00
def _update_color_from_dataset(self, data):
"""Overriding scatter for testing of colormaps.
"""
is_category = False
array = data.asarray()
#only support for 2d-arrays:
try:
m, n = array.shape
except:
raise ValueError, "No support for more than 2 dimensions."
# is dataset a vector or matrix?
if not n==1:
# we have a category dataset
if isinstance(data, fluents.dataset.CategoryDataset):
is_category = True
map_vec = scipy.dot(array, scipy.diag(scipy.arange(n))).sum(1)
else:
map_vec = array.sum(1)
else:
map_vec = array.ravel()
# update facecolors
self.sc.set_array(map_vec)
self.sc.set_clim(map_vec.min(), map_vec.max())
if is_category:
cmap = cm.Paired
else:
cmap = cm.jet
self.sc.set_cmap(cmap)
self.sc.update_scalarmappable() #sets facecolors from array
self.canvas.draw()
2007-01-31 13:59:21 +01:00
def set_facecolor(self, colors):
"""Set patch facecolors.
"""
pass
def set_alphas(self, alphas):
"""Set alpha channel for all patches."""
pass
def set_sizes(self, sizes):
"""Set patch sizes."""
pass
2006-12-18 12:59:12 +01:00
2007-01-31 13:59:21 +01:00
def add_pc_spin_buttons(self, amax, absi, ordi):
sb_a = gtk.SpinButton(climb_rate=1)
sb_a.set_range(1, amax)
2007-03-14 17:17:21 +01:00
sb_a.set_value(absi+1)
2007-01-31 13:59:21 +01:00
sb_a.set_increments(1, 5)
sb_a.connect('value_changed', self.set_absicca)
sb_o = gtk.SpinButton(climb_rate=1)
sb_o.set_range(1, amax)
2007-03-14 17:17:21 +01:00
sb_o.set_value(ordi+1)
2007-01-31 13:59:21 +01:00
sb_o.set_increments(1, 5)
sb_o.connect('value_changed', self.set_ordinate)
hbox = gtk.HBox()
gtk_label_a = gtk.Label("A:")
gtk_label_o = gtk.Label(" O:")
toolitem = gtk.ToolItem()
toolitem.set_expand(False)
toolitem.set_border_width(2)
toolitem.add(hbox)
hbox.pack_start(gtk_label_a)
hbox.pack_start(sb_a)
hbox.pack_start(gtk_label_o)
hbox.pack_start(sb_o)
self._toolbar.insert(toolitem, -1)
toolitem.set_tooltip(self._toolbar.tooltips, "Set Principal component")
self._toolbar.show_all() #do i need this?
def set_absicca(self, sb):
self._absi = sb.get_value_as_int() - 1
xy = self._T[:,[self._absi, self._ordi]]
self.xaxis_data = xy[:,0]
self.yaxis_data = xy[:,1]
self.sc._offsets = xy
2007-03-14 17:17:21 +01:00
self.selection_collection._offsets = xy
self.canvas.draw_idle()
pad = abs(self.xaxis_data.min()-self.xaxis_data.max())*0.05
new_lims = (self.xaxis_data.min()+pad, self.xaxis_data.max()+pad)
self.axes.set_xlim(new_lims, emit=True)
self.canvas.draw_idle()
2006-12-18 12:59:12 +01:00
2007-01-31 13:59:21 +01:00
def set_ordinate(self, sb):
self._ordi = sb.get_value_as_int() - 1
xy = self._T[:,[self._absi, self._ordi]]
self.xaxis_data = xy[:,0]
self.yaxis_data = xy[:,1]
self.sc._offsets = xy
2007-03-14 17:17:21 +01:00
self.selection_collection._offsets = xy
pad = abs(self.yaxis_data.min()-self.yaxis_data.max())*0.05
new_lims = (self.yaxis_data.min()+pad, self.yaxis_data.max()+pad)
self.axes.set_ylim(new_lims, emit=True)
self.canvas.draw_idle()
2007-01-31 13:59:21 +01:00
def show_labels(self, index=None):
if self._text_labels == None:
x = self.xaxis_data
y = self.yaxis_data
self._text_labels = {}
for name, n in self.dataset_1[self.current_dim].items():
2007-03-14 17:17:21 +01:00
txt = self.axes.text(x[n],y[n], name)
2007-01-31 13:59:21 +01:00
txt.set_visible(False)
self._text_labels[n] = txt
if index!=None:
self.hide_labels()
for indx,txt in self._text_labels.items():
if indx in index:
txt.set_visible(True)
self.canvas.draw()
def hide_labels(self):
for txt in self._text_labels.values():
txt.set_visible(False)
self.canvas.draw()
2006-12-18 12:59:12 +01:00
2007-03-14 17:17:21 +01:00
2007-01-31 13:59:21 +01:00
class PcaScorePlot(BlmScatterPlot):
def __init__(self, model, absi=0, ordi=1):
title = "Pca scores (%s)" %model._dataset['X'].get_name()
BlmScatterPlot.__init__(self, title, model, absi, ordi, 'T')
2006-12-18 12:59:12 +01:00
2007-01-31 13:59:21 +01:00
class PcaLoadingPlot(BlmScatterPlot):
2007-01-25 12:58:10 +01:00
def __init__(self, model, absi=0, ordi=1):
2007-01-31 13:59:21 +01:00
title = "Pca loadings (%s)" %model._dataset['X'].get_name()
BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='P', color_by='p_tsq')
2006-12-18 12:59:12 +01:00
2007-01-31 13:59:21 +01:00
class PlsScorePlot(BlmScatterPlot):
def __init__(self, model, absi=0, ordi=1):
title = "Pls scores (%s)" %model._dataset['X'].get_name()
BlmScatterPlot.__init__(self, title, model, absi, ordi, 'T')
class PlsLoadingPlot(BlmScatterPlot):
def __init__(self, model, absi=0, ordi=1):
2007-03-15 11:38:52 +01:00
title = "Pls loadings (%s)" %model._dataset['X'].get_name()
2007-01-31 13:59:21 +01:00
BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='P', color_by='w_tsq')
2006-12-18 12:59:12 +01:00
2007-01-25 12:58:10 +01:00
class PlsCorrelationLoadingPlot(BlmScatterPlot):
def __init__(self, model, absi=0, ordi=1):
title = "Pls correlation loadings (%s)" %model._dataset['X'].get_name()
BlmScatterPlot.__init__(self, title, model, absi, ordi, part_name='CP')
2006-12-18 12:59:12 +01:00
class LineViewXc(plots.LineViewPlot):
"""A line view of centered raw data
"""
2007-01-25 12:58:10 +01:00
def __init__(self, model, name='Profiles'):
2006-12-18 12:59:12 +01:00
# copy, center, plot
2007-01-25 12:58:10 +01:00
x = model._dataset['X'].copy()
2006-12-18 12:59:12 +01:00
x._array = x._array - mean(x._array,0)[newaxis]
plots.LineViewPlot.__init__(self, x, 1, None, name)
2007-01-25 12:58:10 +01:00
2006-12-18 12:59:12 +01:00
class ParalellCoordinates(plots.Plot):
"""Parallell coordinates for score loads with many comp.
"""
2007-01-25 12:58:10 +01:00
def __init__(self, model, p='loads'):
2006-12-18 12:59:12 +01:00
pass
2007-01-25 12:58:10 +01:00
2006-12-18 12:59:12 +01:00
class PlsQvalScatter(plots.ScatterPlot):
"""A vulcano like plot of loads vs qvals
"""
2007-01-25 12:58:10 +01:00
def __init__(self, model, pc=0):
if not model.model.has_key('w_tsq'):
2007-01-31 13:59:21 +01:00
return None
2007-01-25 12:58:10 +01:00
self._W = model.model['P']
dataset_1 = model.as_dataset('P')
dataset_2 = model.as_dataset('w_tsq')
2006-12-18 12:59:12 +01:00
id_dim = dataset_1.get_dim_name(0) #genes
sel_dim = dataset_1.get_dim_name(1) #_comp
sel_dim_2 = dataset_2.get_dim_name(1) #_zero_dim
id_1, = dataset_1.get_identifiers(sel_dim, [0])
id_2, = dataset_2.get_identifiers(sel_dim_2, [0])
2007-01-25 12:58:10 +01:00
if model.model.has_key('w_tsq'):
col = model.model['w_tsq'].ravel()
2007-03-14 17:17:21 +01:00
#col = normalise(col)
2006-12-18 12:59:12 +01:00
else:
col = 'g'
plots.ScatterPlot.__init__(self, dataset_1, dataset_2,
id_dim, sel_dim, id_1, id_2,
c=col, s=20, sel_dim_2=sel_dim_2,
name='Load Volcano')
2007-01-31 13:59:21 +01:00
2007-01-25 12:58:10 +01:00
class PredictionErrorPlot(plots.Plot):
"""A boxplot of prediction error vs. comp. number.
"""
2007-01-31 13:59:21 +01:00
def __init__(self, model, name="Prediction Error"):
2007-01-25 12:58:10 +01:00
if not model.model.has_key('sep'):
logger.log('notice', 'Model has no calculations of sep')
2007-01-31 13:59:21 +01:00
return None
2007-01-25 12:58:10 +01:00
plots.Plot.__init__(self, name)
self._frozen = True
self.current_dim = 'johndoe'
2007-03-14 17:17:21 +01:00
self.axes = self.fig.add_subplot(111)
2007-01-25 12:58:10 +01:00
# draw
sep = model.model['sep']
aopt = model.model['aopt']
2007-03-14 17:17:21 +01:00
bx_plot_lines = self.axes.boxplot(sqrt(sep))
aopt_marker = self.axes.axvline(aopt, linewidth=10,
2007-01-25 12:58:10 +01:00
color='r',zorder=0,
alpha=.5)
# add canvas
self.add(self.canvas)
self.canvas.show()
2006-12-18 12:59:12 +01:00
2007-01-25 12:58:10 +01:00
def set_current_selection(self, selection):
pass
class TRBiplot(plots.ScatterPlot):
def __init__(self, model, absi=0, ordi=1):
title = "Target rotation biplot(%s)" %model._dataset['X'].get_name()
BlmScatterPlot.__init__(self, title, model, absi, ordi, 'B')
B = model.model.get('B')
# normalize B
Bnorm = scipy.apply_along_axis(scipy.linalg.norm, 1, B)
x = model._dataset['X'].copy()
Xc = x._array - mean(x._array,0)[newaxis]
w_rot = B/Bnorm
t_rot = dot(Xc, w_rot)
2007-01-25 12:58:10 +01:00
2006-12-18 12:59:12 +01:00
class InfluencePlot(plots.ScatterPlot):
"""
"""
pass
2007-01-31 13:59:21 +01:00
class RMSEPPlot(plots.BarPlot):
def __init__(self, model, name="RMSEP"):
if not model.model.has_key('rmsep'):
logger.log('notice', 'Model has no calculations of sep')
return
dataset = model.as_dataset('rmsep')
plots.BarPlot.__init__(self, dataset, name=name)
2006-12-18 12:59:12 +01:00
def normalise(x):
"""Scale vector x to [0,1]
"""
x = x - x.min()
x = x/x.max()
return x