2008-02-05 12:34:14 +01:00
|
|
|
import sys,os
|
|
|
|
import os.path
|
|
|
|
import webbrowser
|
|
|
|
import cPickle
|
|
|
|
|
|
|
|
import scipy
|
|
|
|
import networkx as nx
|
|
|
|
|
|
|
|
from fluents import logger,plots,workflow,dataset,main
|
|
|
|
from fluents.lib import blmfuncs,nx_utils,cx_utils
|
|
|
|
|
|
|
|
import gobrowser
|
|
|
|
|
|
|
|
|
|
|
|
class SmallTestWorkflow(workflow.Workflow):
|
|
|
|
name = 'Demo'
|
|
|
|
ident = 'demo'
|
|
|
|
description = 'A small test workflow for gene expression analysis.'
|
|
|
|
chip = 'hgu'
|
|
|
|
def __init__(self):
|
|
|
|
workflow.Workflow.__init__(self)
|
|
|
|
|
|
|
|
# DATA IMPORT
|
|
|
|
load = workflow.Stage('load', 'Data')
|
|
|
|
|
|
|
|
load_small = LoadDataFunction('load-small', 'Small', self)
|
|
|
|
load.add_function(load_small)
|
|
|
|
|
|
|
|
load_medium = LoadDataFunction('load-geneid', 'GeneID', self, 'geneid')
|
|
|
|
load.add_function(load_medium)
|
|
|
|
|
|
|
|
load_medium = LoadDataFunction('load-full', 'FullChip', self, 'full')
|
|
|
|
load.add_function(load_medium)
|
|
|
|
|
|
|
|
self.add_stage(load)
|
|
|
|
|
|
|
|
# NETWORK PREPROCESSING
|
|
|
|
#net = workflow.Stage('net', 'Network integration')
|
|
|
|
#net.add_function(DiffKernelFunction())
|
|
|
|
#net.add_function(ModKernelFunction())
|
|
|
|
#self.add_stage(net)
|
|
|
|
|
|
|
|
# Models
|
|
|
|
model = workflow.Stage('models', 'Models')
|
|
|
|
model.add_function(blmfuncs.PCA())
|
|
|
|
model.add_function(blmfuncs.PLS())
|
|
|
|
model.add_function(SAM())
|
|
|
|
self.add_stage(model)
|
|
|
|
|
|
|
|
query = workflow.Stage('query', 'Gene Query')
|
|
|
|
query.add_function(NCBIQuery())
|
|
|
|
query.add_function(KEGGQuery())
|
|
|
|
query.add_function(SubgraphQuery())
|
|
|
|
self.add_stage(query)
|
|
|
|
|
|
|
|
# Background knowledge
|
|
|
|
go = workflow.Stage('go', 'Gene Ontology')
|
|
|
|
go.add_function(gobrowser.PlotDagFunction())
|
|
|
|
go.add_function(GoEnrichment())
|
|
|
|
go.add_function(GoEnrichmentCond())
|
|
|
|
go.add_function(MapGO2Gene())
|
|
|
|
go.add_function(MapGene2GO())
|
|
|
|
self.add_stage(go)
|
|
|
|
|
|
|
|
# EXTRA PLOTS
|
|
|
|
#plt = workflow.Stage('net', 'Network')
|
|
|
|
#plt.add_function(nx_analyser.KeggNetworkAnalyser())
|
|
|
|
#self.add_stage(plt)
|
|
|
|
|
|
|
|
logger.log('debug', 'Small test workflow is now active')
|
|
|
|
|
|
|
|
|
|
|
|
class LoadDataFunction(workflow.Function):
|
|
|
|
"""Loads all datasets in a given directory."""
|
|
|
|
def __init__(self, ident, label, wf, dir=''):
|
|
|
|
workflow.Function.__init__(self, ident, label)
|
|
|
|
self._dir = dir
|
|
|
|
self._wf = wf
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
path = os.path.join(main.options.datadir, self._wf.ident, self._dir)
|
|
|
|
files = os.listdir(path)
|
|
|
|
out = []
|
|
|
|
for fn in files:
|
|
|
|
if fn.endswith('.ftsv'):
|
|
|
|
out.append(dataset.read_ftsv(os.path.join(path, fn)))
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
##### WORKFLOW SPECIFIC FUNCTIONS ######
|
|
|
|
|
|
|
|
|
|
|
|
class SAM(workflow.Function):
|
|
|
|
def __init__(self, id='sam', name='SAM'):
|
|
|
|
workflow.Function.__init__(self, id, name)
|
|
|
|
|
|
|
|
def run(self, x, y):
|
|
|
|
n_iter = 50 #B
|
|
|
|
alpha = 0.01 #cut off on qvals
|
|
|
|
|
|
|
|
###############
|
|
|
|
|
|
|
|
# Main function call
|
|
|
|
|
|
|
|
# setup prelimenaries
|
|
|
|
import rpy
|
|
|
|
rpy.r.library("siggenes")
|
|
|
|
rpy.r.library("multtest")
|
|
|
|
|
|
|
|
cl = scipy.dot(y.asarray(), scipy.diag(scipy.arange(y.shape[1]))).sum(1)
|
|
|
|
data = x.asarray().T
|
|
|
|
sam = rpy.r.sam(data, cl=cl, B=n_iter, var_equal=False,med=False,s0=scipy.nan,rand=scipy.nan)
|
|
|
|
qvals = scipy.asarray(rpy.r.slot(sam, "p.value"))
|
|
|
|
pvals = scipy.asarray(rpy.r.slot(sam, "q.value"))
|
|
|
|
|
|
|
|
sam_index = (qvals<alpha).nonzero()[0]
|
|
|
|
|
|
|
|
# Update selection object
|
|
|
|
dim_name = x.get_dim_name(1)
|
|
|
|
sam_selection = x.get_identifiers(dim_name, indices=sam_index)
|
|
|
|
main.project.set_selection(dim_name, sam_selection)
|
|
|
|
|
|
|
|
sel = dataset.Selection('SAM selection')
|
|
|
|
sel.select(dim_name, sam_selection)
|
|
|
|
logger.log('notice','Number of significant varibles (SAM): %s' %len(sam_selection))
|
|
|
|
|
|
|
|
# ## OUTPUT ###
|
|
|
|
xcolname = x.get_dim_name(1) # genes
|
|
|
|
x_col_ids = [xcolname, x.get_identifiers(xcolname, sorted=True)]
|
|
|
|
sing_id = ['_john', ['0']] #singleton
|
|
|
|
D_qvals = dataset.Dataset(qvals, (x_col_ids, sing_id), name='q_vals')
|
|
|
|
D_pvals = dataset.Dataset(pvals, (x_col_ids, sing_id), name='p_vals')
|
|
|
|
|
|
|
|
# plots
|
|
|
|
s_indx = qvals.flatten().argsort()
|
|
|
|
s_ids = [x_col_ids[0],[x_col_ids[1][i] for i in s_indx]]
|
|
|
|
xindex = scipy.arange(len(qvals))
|
|
|
|
qvals_s = qvals.take(s_indx)
|
|
|
|
D_qs = dataset.Dataset(qvals_s, (s_ids, sing_id), name="sorted qvals")
|
|
|
|
Dind = dataset.Dataset(xindex, (s_ids, sing_id), name="dum")
|
|
|
|
st = plots.ScatterPlot(D_qs, Dind, 'gene_ids', '_john', '0', '0', s=10, name='SAM qvals')
|
|
|
|
|
|
|
|
return [D_qvals, D_pvals, D_qs, st, sel]
|
|
|
|
|
|
|
|
|
|
|
|
class DiffKernelFunction(workflow.Function):
|
|
|
|
def __init__(self):
|
|
|
|
workflow.Function.__init__(self, 'diffkernel', 'Diffusion')
|
|
|
|
|
|
|
|
def run(self, x, a):
|
|
|
|
"""x is gene expression data, a is the network.
|
|
|
|
"""
|
|
|
|
#sanity check:
|
|
|
|
g = a.asnetworkx()
|
|
|
|
genes = x.get_identifiers(x.get_dim_name(1), sorted=True)
|
|
|
|
W = nx.adj_matrix(g, nodelist=genes)
|
|
|
|
X = x.asarray()
|
|
|
|
Xc, mn_x = cx_utils.mat_center(X, ret_mn=True)
|
|
|
|
out = []
|
|
|
|
alpha = 1.0
|
|
|
|
beta = 1.0
|
|
|
|
K = nx_utils.K_diffusion(W, alpha=alpha, beta=beta,normalised=True)
|
|
|
|
Xp = scipy.dot(Xc, K) + mn_x
|
|
|
|
# dataset
|
|
|
|
row_ids = (x.get_dim_name(0),
|
|
|
|
x.get_identifiers(x.get_dim_name(0),
|
|
|
|
sorted=True))
|
|
|
|
col_ids = (x.get_dim_name(1),
|
|
|
|
x.get_identifiers(x.get_dim_name(1),
|
|
|
|
sorted=True))
|
|
|
|
|
|
|
|
xout = dataset.Dataset(Xp,
|
|
|
|
(row_ids, col_ids),
|
|
|
|
name=x.get_name()+'_diff'+str(alpha))
|
|
|
|
out.append(xout)
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class ModKernelFunction(workflow.Function):
|
|
|
|
def __init__(self):
|
|
|
|
workflow.Function.__init__(self, 'mokernel', 'Modularity')
|
|
|
|
|
|
|
|
def run(self,x,a):
|
|
|
|
X = x.asarray()
|
|
|
|
g = a.asnetworkx()
|
|
|
|
genes = x.get_identifiers(x.get_dim_name(1), sorted=True)
|
|
|
|
W = nx.adj_matrix(g, nodelist=genes)
|
|
|
|
out=[]
|
|
|
|
alpha=.2
|
|
|
|
Xc,mn_x = cx_utils.mat_center(X, ret_mn=True)
|
|
|
|
K = nx_utils.K_modularity(W, alpha=alpha)
|
|
|
|
Xp = scipy.dot(Xc, K)
|
|
|
|
Xp = Xp + mn_x
|
|
|
|
|
|
|
|
# dataset
|
|
|
|
row_ids = (x.get_dim_name(0),
|
|
|
|
x.get_identifiers(x.get_dim_name(0),
|
|
|
|
sorted=True))
|
|
|
|
col_ids = (x.get_dim_name(1),
|
|
|
|
x.get_identifiers(x.get_dim_name(1),
|
|
|
|
sorted=True))
|
|
|
|
xout = dataset.Dataset(Xp,
|
|
|
|
(row_ids,col_ids),
|
|
|
|
name=x.get_name()+'_mod'+str(alpha))
|
|
|
|
out.append(xout)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class NCBIQuery(workflow.Function):
|
|
|
|
def __init__(self, gene_id_name='gene_ids'):
|
|
|
|
self._gene_id_name = gene_id_name
|
|
|
|
workflow.Function.__init__(self, 'query', 'NCBI')
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
selection = main.project.get_selection()
|
|
|
|
if not selection.has_key(self._gene_id_name):
|
|
|
|
logger.log("notice", "Expected gene ids: %s, but got: %s" %(self._gene_id_name, selection.keys()))
|
|
|
|
return None
|
|
|
|
if len(selection[self._gene_id_name])==0:
|
|
|
|
logger.log("notice", "No selected genes to query")
|
|
|
|
return None
|
|
|
|
|
|
|
|
base = 'http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?'
|
|
|
|
options = {r'&db=' : 'gene',
|
|
|
|
r'&cmd=' : 'retrieve',
|
|
|
|
r'&dopt=' : 'full_report'}
|
|
|
|
gene_str = ''.join([gene + "+" for gene in selection[self._gene_id_name]])
|
|
|
|
options[r'&list_uids='] = gene_str[:-1]
|
|
|
|
opt_str = ''.join([key+value for key,value in options.items()])
|
|
|
|
web_str = base + opt_str
|
|
|
|
webbrowser.open(web_str)
|
|
|
|
|
|
|
|
|
|
|
|
class KEGGQuery(workflow.Function):
|
|
|
|
def __init__(self, org='hsa', gene_id_name='gene_ids'):
|
|
|
|
self._org=org
|
|
|
|
self._gene_id_name = gene_id_name
|
|
|
|
workflow.Function.__init__(self, 'query', 'KEGG')
|
|
|
|
|
|
|
|
def run(self, selection):
|
|
|
|
if not selection.has_key(self._gene_id_name):
|
|
|
|
logger.log("notice", "Expected gene ids: %s, but got. %s" %(self._gene_id_name, selection.keys()))
|
|
|
|
return None
|
|
|
|
if len(selection[self._gene_id_name])==0:
|
|
|
|
logger.log("notice", "No selected genes to query")
|
|
|
|
return None
|
|
|
|
|
|
|
|
base = r'http://www.genome.jp/dbget-bin/www_bget?'
|
|
|
|
gene_str = ''.join([gene + "+" for gene in selection[self._gene_id_name]])
|
|
|
|
gene_str = gene_str[:-1]
|
|
|
|
gene_str = self._org + "+" + gene_str
|
|
|
|
web_str = base + gene_str
|
|
|
|
webbrowser.open(web_str)
|
|
|
|
|
|
|
|
|
|
|
|
class GoEnrichment(workflow.Function):
|
|
|
|
def __init__(self):
|
|
|
|
workflow.Function.__init__(self, 'goenrich', 'Go Enrichment')
|
|
|
|
|
|
|
|
def run(self, data):
|
|
|
|
import rpy
|
|
|
|
rpy.r.library("GOstats")
|
|
|
|
|
|
|
|
# Get universe
|
|
|
|
# Here, we are using a defined dataset to represent the universe
|
|
|
|
if not 'gene_ids' in data:
|
|
|
|
logger.log('notice', 'No dimension called [gene_ids] in dataset: %s' %data.get_name())
|
|
|
|
return
|
|
|
|
universe = list(data.get_identifiers('gene_ids'))
|
|
|
|
logger.log('notice', 'Universe consists of %s gene ids from %s' %(len(universe), data.get_name()))
|
|
|
|
# Get current selection and validate
|
|
|
|
curr_sel = main.project.get_selection()
|
|
|
|
selected_genes = list(curr_sel['gene_ids'])
|
|
|
|
if len(selected_genes)==0:
|
|
|
|
logger.log('notice', 'This function needs a current selection!')
|
|
|
|
return
|
|
|
|
|
|
|
|
# Hypergeometric parameter object
|
|
|
|
pval_cutoff = 0.9999
|
|
|
|
cond = False
|
|
|
|
test_direction = 'over'
|
|
|
|
params = rpy.r.new("GOHyperGParams",
|
|
|
|
geneIds=selected_genes,
|
|
|
|
annotation="hgu133a",
|
|
|
|
ontology="BP",
|
|
|
|
pvalueCutoff=pval_cutoff,
|
|
|
|
conditional=cond,
|
|
|
|
testDirection=test_direction
|
|
|
|
)
|
|
|
|
# run test
|
|
|
|
# result.keys(): ['Count', 'Term', 'OddsRatio', 'Pvalue', 'ExpCount', 'GOBPID', 'Size']
|
|
|
|
result = rpy.r.summary(rpy.r.hyperGTest(params))
|
|
|
|
|
|
|
|
# dataset
|
|
|
|
terms = result['GOBPID']
|
|
|
|
pvals = scipy.log(scipy.asarray(result['Pvalue']))
|
|
|
|
row_ids = ('go-terms', terms)
|
|
|
|
col_ids = ('_john', ['_doe'])
|
|
|
|
|
|
|
|
xout = dataset.Dataset(pvals,
|
|
|
|
(row_ids, col_ids),
|
|
|
|
name='P values (enrichment)')
|
|
|
|
return [xout]
|
|
|
|
|
|
|
|
|
|
|
|
class GoEnrichmentCond(workflow.Function):
|
|
|
|
""" Enrichment conditioned on dag structure."""
|
|
|
|
def __init__(self):
|
|
|
|
workflow.Function.__init__(self, 'goenrich', 'Go Cond. Enrich.')
|
|
|
|
|
|
|
|
def run(self, data):
|
|
|
|
import rpy
|
|
|
|
rpy.r.library("GOstats")
|
|
|
|
|
|
|
|
# Get universe
|
|
|
|
# Here, we are using a defined dataset to represent the universe
|
|
|
|
if not 'gene_ids' in data:
|
|
|
|
logger.log('notice', 'No dimension called [gene_ids] in dataset: %s', data.get_name())
|
|
|
|
return
|
|
|
|
universe = list(data.get_identifiers('gene_ids'))
|
|
|
|
logger.log('notice', 'Universe consists of %s gene ids from %s' %(len(universe), data.get_name()))
|
|
|
|
# Get current selection and validate
|
|
|
|
curr_sel = main.project.get_selection()
|
|
|
|
selected_genes = list(curr_sel['gene_ids'])
|
|
|
|
if len(selected_genes)==0:
|
|
|
|
logger.log('notice', 'This function needs a current selection!')
|
|
|
|
return
|
|
|
|
|
|
|
|
# Hypergeometric parameter object
|
|
|
|
pval_cutoff = 1
|
|
|
|
cond = True
|
|
|
|
test_direction = 'over'
|
|
|
|
params = rpy.r.new("GOHyperGParams",
|
|
|
|
geneIds=selected_genes,
|
|
|
|
annotation="hgu133a",
|
|
|
|
ontology="BP",
|
|
|
|
pvalueCutoff=pval_cutoff,
|
|
|
|
conditional=cond,
|
|
|
|
testDirection=test_direction
|
|
|
|
)
|
|
|
|
# run test
|
|
|
|
# result.keys(): ['Count', 'Term', 'OddsRatio', 'Pvalue', 'ExpCount', 'GOBPID', 'Size']
|
|
|
|
result = rpy.r.summary(rpy.r.hyperGTest(params))
|
|
|
|
|
|
|
|
# dataset
|
|
|
|
terms = result['GOBPID']
|
|
|
|
pvals = scipy.log(scipy.asarray(result['Pvalue']))
|
|
|
|
row_ids = ('go-terms', terms)
|
|
|
|
col_ids = ('_john', ['_doe'])
|
|
|
|
|
|
|
|
xout = dataset.Dataset(pvals,
|
|
|
|
(row_ids, col_ids),
|
|
|
|
name='P values (enrichment)')
|
|
|
|
return [xout]
|
|
|
|
|
|
|
|
|
|
|
|
class MapGene2GO(workflow.Function):
|
|
|
|
def __init__(self, ont='bp', gene_id_name='gene_ids'):
|
|
|
|
self._ont = ont
|
|
|
|
self._gene_id_name = gene_id_name
|
|
|
|
workflow.Function.__init__(self, 'gene2go', 'gene->GO')
|
|
|
|
# load data at init
|
|
|
|
try:
|
|
|
|
fname = "/home/flatberg/fluents/data/gene2go.pcl"
|
|
|
|
self._gene2go = cPickle.load(open(fname))
|
|
|
|
except:
|
|
|
|
logger.log("notice", "could not load mapping")
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
selection = main.project.get_selection()
|
|
|
|
if not selection.has_key(self._gene_id_name):
|
|
|
|
logger.log("notice", "Expected gene ids: %s, but got. %s" %(self._gene_id_name, selection.keys()))
|
|
|
|
return None
|
|
|
|
if len(selection[self._gene_id_name])==0:
|
|
|
|
logger.log("notice", "No selected genes to query")
|
|
|
|
return None
|
|
|
|
|
|
|
|
gene_ids = selection[self._gene_id_name]
|
|
|
|
go_ids = set()
|
|
|
|
for gene in gene_ids:
|
|
|
|
go_ids_new = self._gene2go.get(gene, [])
|
|
|
|
if not go_ids_new:
|
|
|
|
logger.log("notice", "Could not find any goterms for %s" %gene)
|
|
|
|
go_ids.update(self._gene2go.get(gene, []))
|
|
|
|
main.project.set_selection('go-terms', go_ids)
|
|
|
|
logger.log("notice", "GO terms updated")
|
|
|
|
|
|
|
|
|
|
|
|
class MapGO2Gene(workflow.Function):
|
|
|
|
def __init__(self, ont='bp', gene_id_name='go-terms'):
|
|
|
|
self._ont = ont
|
|
|
|
self._gene_id_name = gene_id_name
|
|
|
|
workflow.Function.__init__(self, 'go2gene', 'GO->gene')
|
|
|
|
# load data at init
|
|
|
|
try:
|
|
|
|
fname = "/home/flatberg/fluents/data/go2gene.pcl"
|
|
|
|
self._go2gene = cPickle.load(open(fname))
|
|
|
|
except:
|
|
|
|
logger.log("notice", "could not load mapping")
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
selection = main.project.get_selection()
|
|
|
|
if not selection.has_key(self._gene_id_name):
|
|
|
|
logger.log("notice", "Expected gene ids: %s, but got. %s" %(self._gene_id_name, selection.keys()))
|
|
|
|
return None
|
|
|
|
if len(selection[self._gene_id_name])==0:
|
|
|
|
logger.log("notice", "No selected genes to query")
|
|
|
|
return None
|
|
|
|
|
|
|
|
go_ids = selection[self._gene_id_name]
|
|
|
|
gene_ids = set()
|
|
|
|
for go in go_ids:
|
|
|
|
if not self._go2gene.get(go,[]):
|
|
|
|
logger.log("notice", "Could not find any gene ids for %s" %go)
|
|
|
|
gene_ids.update(self._go2gene.get(go,[]))
|
|
|
|
main.project.set_selection('gene_ids', gene_ids)
|
|
|
|
logger.log("notice", "GO terms updated")
|
|
|
|
|
|
|
|
|
|
|
|
class SubgraphQuery(workflow.Function):
|
|
|
|
def __init__(self, graph='kegg', dim='gene_ids'):
|
|
|
|
self._gtype = graph
|
|
|
|
self._dim = dim
|
|
|
|
|
|
|
|
workflow.Function.__init__(self, 'keggraph', 'KeggGraph')
|
|
|
|
|
|
|
|
def run(self, Dw, DA):
|
|
|
|
max_edge_ratio = .20
|
|
|
|
max_cov_ratio = .25
|
|
|
|
neigh_type = 'cov'
|
|
|
|
neigh_type = 'cosine'
|
|
|
|
#neigh_type = 'heat'
|
|
|
|
# 1.) Operate on a subset selection
|
|
|
|
selection = main.project.get_selection()
|
|
|
|
if not selection.has_key(self._dim):
|
|
|
|
logger.log("notice", "Expected gene ids: %s, but got. %s" %(self._dim, selection.keys()))
|
|
|
|
return None
|
|
|
|
if len(selection[self._dim]) == 0:
|
2008-02-06 10:42:46 +01:00
|
|
|
logger.log("notice", "No selected genes to query, using all")
|
|
|
|
Dw = Dw.subdata(self._dim, Dw.get_identifiers(self._dim)[:100])
|
|
|
|
else:
|
|
|
|
Dw = Dw.subdata(self._dim, selection[self._dim])
|
2008-02-05 12:34:14 +01:00
|
|
|
|
|
|
|
# 2.) Pairwise goodness in loading space
|
2008-02-06 10:42:46 +01:00
|
|
|
indices = self._pairsim(Dw)
|
|
|
|
idents1 = Dw.get_identifiers(self._dim, indices[:,0])
|
|
|
|
idents2 = Dw.get_identifiers(self._dim, indices[:,1])
|
|
|
|
idents = zip(idents1, idents2)
|
|
|
|
|
|
|
|
# 3.) Identify close subgraphs
|
2008-02-29 17:23:57 +01:00
|
|
|
G = DA.asnetworkx()
|
|
|
|
for edge in G.edges():
|
|
|
|
if edge not in idents:
|
|
|
|
G.delete_edge(edge)
|
|
|
|
S = nx.connected_component_subgraphs(G)
|
|
|
|
print map(len, S)
|
2008-02-06 10:42:46 +01:00
|
|
|
# 4.) Rank subgraphs
|
|
|
|
|
|
|
|
main.project.set_selection('gene_ids', idents1)
|
|
|
|
#main.project.set_sele
|
|
|
|
logger.log("notice", "Gene ids updated")
|
2008-02-29 17:23:57 +01:00
|
|
|
plt = GraphQueryScatterPlot(S, Dw)
|
2008-02-06 10:42:46 +01:00
|
|
|
#return [plt]
|
|
|
|
|
|
|
|
def _pairsim(self, Dw, ptype='cosine',cut_rat=.2):
|
|
|
|
"""Returns close pairs across given dim.
|
|
|
|
ptype : ['cov', 'correlation', 'cosine', 'heat', 'euclidean']
|
|
|
|
"""
|
2008-02-05 12:34:14 +01:00
|
|
|
W = Dw.asarray()
|
2008-02-06 10:42:46 +01:00
|
|
|
if ptype == 'cov':
|
2008-02-05 12:34:14 +01:00
|
|
|
W -= W.mean(1)[:,scipy.newaxis]
|
|
|
|
wcov = scipy.dot(W, W.T)/(W.shape[1]-1)
|
2008-02-06 10:42:46 +01:00
|
|
|
wcov_min = wcov.max()*cut_rat
|
|
|
|
indices = scipy.asarray(scipy.where(wcov >= wcov_min)).T
|
|
|
|
elif ptype == 'heat':
|
|
|
|
from hcluster import pdist, squareform
|
|
|
|
D = squareform(pdist(W))
|
|
|
|
H = exp(-D)
|
|
|
|
h_min = H.max()*cut_rat
|
|
|
|
indices = scipy.asarray(scipy.where(H >= h_min)).T
|
|
|
|
elif ptype in ['euclidean', 'cosine', 'correlation']:
|
|
|
|
from hcluster import pdist, squareform
|
|
|
|
D = squareform(pdist(W), ptype)
|
|
|
|
d_min = D.max()*cut_rat
|
|
|
|
indices = []
|
|
|
|
for i in range(D.shape[0]):
|
|
|
|
for j in range(i, D.shape[0]):
|
|
|
|
if D[i,j] <= d_min:
|
|
|
|
indices.append([i,j])
|
|
|
|
print "W"
|
|
|
|
print W.shape
|
|
|
|
indices = scipy.asarray(indices)
|
|
|
|
|
|
|
|
else:
|
|
|
|
raise ValueError("ptype: %s not valid" %ptype)
|
|
|
|
return indices
|
|
|
|
|
|
|
|
def _subgraphsim(self, Dw, idents, stype='dijkstra'):
|
|
|
|
# subgraph
|
|
|
|
Gw = nx.XGraph()
|
|
|
|
for edge in idents:
|
|
|
|
e = G.get_edge(edge)
|
|
|
|
Gw.add_edge()
|
|
|
|
if stype == 'dijkstra':
|
|
|
|
pass
|
2008-02-05 12:34:14 +01:00
|
|
|
|
|
|
|
class GraphQueryScatterPlot(plots.ScatterPlot):
|
2008-02-29 17:23:57 +01:00
|
|
|
def __init__(self, subgraphs, Dw, *args, **kw):
|
|
|
|
self._subgraphs = subgraphs
|
|
|
|
self._nx_nodes = []
|
|
|
|
self._nx_edges = []
|
|
|
|
self._init_scatter(Dw)
|
|
|
|
self.overlay_subgraphs()
|
|
|
|
|
|
|
|
def _init_scatter(self, Dw):
|
|
|
|
self._Dw = Dw
|
2008-02-05 12:34:14 +01:00
|
|
|
id_dim, sel_dim = Dw.get_dim_name()
|
|
|
|
self._dim = id_dim
|
|
|
|
id_1, = Dw.get_identifiers(sel_dim, [0])
|
|
|
|
id_2, = Dw.get_identifiers(sel_dim, [1])
|
2008-02-29 17:23:57 +01:00
|
|
|
plots.ScatterPlot.__init__(self, Dw, Dw, id_dim, sel_dim, id_1, id_2, c='g', s=50,name="Hypo", alpha=.5)
|
2008-02-05 12:34:14 +01:00
|
|
|
|
|
|
|
def overlay_subgraphs(self):
|
2008-02-29 17:23:57 +01:00
|
|
|
all_nodes = self._Dw.get_identifiers(self._dim, sorted=True)
|
|
|
|
for subgraph in self._subgraphs:
|
|
|
|
# get xy positions from
|
2008-02-05 12:34:14 +01:00
|
|
|
nodes = subgraph.nodes()
|
2008-02-29 17:23:57 +01:00
|
|
|
for i, node in enumerate(all_nodes):
|
|
|
|
pos[node] = (self.xaxis_data[i], self.yaxis_data[i])
|
|
|
|
nn = nx.draw_networkx_nodes(subgraph, pos, node_size=200, ax=self.axes, zorder=10)
|
|
|
|
ee = nx.draw_networkx_edges(subgraph, pos, ax=self.axes, zorder=9)
|
|
|
|
self._nx_nodes.append(nn)
|
|
|
|
self._nx_edges.append(ee)
|
|
|
|
|
|
|
|
def _delete_networks(self):
|
|
|
|
if len(self._nx_nodes) > 0:
|
|
|
|
for n in self._nx_nodes:
|
|
|
|
self._nx_nodes.remove(n)
|
|
|
|
self.axes.collections.remove(n)
|
|
|
|
if len(self._nx_edges) > 0:
|
|
|
|
for e in self._nx_edges:
|
|
|
|
self._nx_edges.remove(e)
|
|
|
|
self.axes.collections.remove(e)
|
2008-02-05 12:34:14 +01:00
|
|
|
|
2008-02-29 17:23:57 +01:00
|
|
|
def set_ordinate(self, sb):
|
|
|
|
self._delete_networks()
|
|
|
|
self.overlay_subgraphs()
|
|
|
|
plots.ScatterPlot.set_ordinate(self, sb)
|
|
|
|
|
|
|
|
def set_absicca(self, sb):
|
|
|
|
self._delete_networks()
|
|
|
|
self.overlay_subgraphs()
|
|
|
|
plots.ScatterPlot.set_absicca(self, sb)
|
|
|
|
|
|
|
|
|
|
|
|
class CAsinglesel(workflow.Function):
|
|
|
|
""" Modified non-symmetric correpsondence analysis.
|
|
|
|
|
|
|
|
Setup multiple selections:
|
|
|
|
|
|
|
|
Input : - a subset(s) along a dimension (selection) of `interesting` identifiers.
|
|
|
|
- Predefined subsets (categories) along the same dimension.
|
|
|
|
|
|
|
|
1.) The cooccurence matrix of interesting identifers and categories is made.
|
|
|
|
2.) The variables are scaled to represent the relative frequencies.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def run(X, Ckegg):
|
2008-02-05 12:34:14 +01:00
|
|
|
pass
|
2008-02-29 17:23:57 +01:00
|
|
|
|
|
|
|
|
|
|
|
class CASingleSelDouble(workflow.Function):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
def run(X, Ckegg):
|
|
|
|
pass
|
|
|
|
|