217 lines
7.0 KiB
Python
217 lines
7.0 KiB
Python
|
import sys,os
|
||
|
import webbrowser
|
||
|
|
||
|
from fluents import logger, plots,workflow,dataset
|
||
|
from fluents.lib import blmfuncs,nx_utils,validation,engines,cx_stats,cx_utils
|
||
|
import scipy
|
||
|
|
||
|
|
||
|
class SmallTestWorkflow(workflow.Workflow):
|
||
|
name = 'SmallTest'
|
||
|
ident = 'smalltest'
|
||
|
description = 'A small test workflow for gene expression analysis'
|
||
|
|
||
|
def __init__(self, app):
|
||
|
workflow.Workflow.__init__(self, app)
|
||
|
|
||
|
# DATA IMPORT
|
||
|
load = workflow.Stage('load', 'Data')
|
||
|
load.add_function(DatasetLoadFunctionSmokerSmall())
|
||
|
#load.add_function(DatasetLoadFunctionCYCLE())
|
||
|
self.add_stage(load)
|
||
|
|
||
|
# NETWORK PREPROCESSING
|
||
|
net = workflow.Stage('net', 'Network integration')
|
||
|
net.add_function(DiffKernelFunction())
|
||
|
net.add_function(ModKernelFunction())
|
||
|
#net.add_function(RandDiffKernelFunction())
|
||
|
self.add_stage(net)
|
||
|
|
||
|
# BLM's
|
||
|
model = workflow.Stage('models', 'Models')
|
||
|
model.add_function(blmfuncs.PCA())
|
||
|
model.add_function(blmfuncs.PLS())
|
||
|
|
||
|
#model.add_function(bioconFuncs.SAM(app))
|
||
|
self.add_stage(model)
|
||
|
|
||
|
query = workflow.Stage('query', 'Gene Query')
|
||
|
query.add_function(NCBIQuery())
|
||
|
query.add_function(KEGGQuery())
|
||
|
self.add_stage(query)
|
||
|
|
||
|
# EXTRA PLOTS
|
||
|
#plt = workflow.Stage('net', 'Network')
|
||
|
#plt.add_function(nx_analyser.KeggNetworkAnalyser())
|
||
|
#self.add_stage(plt)
|
||
|
|
||
|
|
||
|
logger.log('debug', 'Small test workflow is now active')
|
||
|
|
||
|
|
||
|
class DatasetLoadFunctionSmokerSmall(workflow.Function):
|
||
|
"""Loader for all ftsv files of smokers small datasets."""
|
||
|
def __init__(self):
|
||
|
workflow.Function.__init__(self, 'load_data', 'Smoker')
|
||
|
|
||
|
def run(self):
|
||
|
path = 'data/smokers-small/'
|
||
|
files = os.listdir(path)
|
||
|
out = []
|
||
|
for fname in files:
|
||
|
if fname.endswith('.ftsv'):
|
||
|
input_file = open(os.path.join(path, fname))
|
||
|
out.append(dataset.read_ftsv(input_file))
|
||
|
return out
|
||
|
|
||
|
class DatasetLoadFunctionCYCLE(workflow.Function):
|
||
|
"""Loader for pickled CYCLE datasets."""
|
||
|
def __init__(self):
|
||
|
workflow.Function.__init__(self, 'load_data', 'Cycle')
|
||
|
|
||
|
def run(self):
|
||
|
filename='fluents/data/CYCLE'
|
||
|
if filename:
|
||
|
return dataset.from_file(filename)
|
||
|
|
||
|
|
||
|
##### WORKFLOW SPECIFIC FUNCTIONS ######
|
||
|
|
||
|
|
||
|
class DiffKernelFunction(workflow.Function):
|
||
|
def __init__(self):
|
||
|
workflow.Function.__init__(self, 'diffkernel', 'Diffusion')
|
||
|
|
||
|
def run(self, x, a):
|
||
|
"""x is gene expression data, a is the network.
|
||
|
"""
|
||
|
#sanity check:
|
||
|
g = a.asnetworkx()
|
||
|
genes = x.get_identifiers(x.get_dim_name(1), sorted=True)
|
||
|
W = nx.adj_matrix(g, nodelist=genes)
|
||
|
X = x.asarray()
|
||
|
Xc, mn_x = cx_utils.mat_center(X, ret_mn=True)
|
||
|
out = []
|
||
|
alpha=1.0
|
||
|
beta = 1.0
|
||
|
K = nx_utils.K_diffusion(W, alpha=alpha, beta=beta,normalised=True)
|
||
|
Xp = scipy.dot(Xc, K) + mn_x
|
||
|
# dataset
|
||
|
row_ids = (x.get_dim_name(0),
|
||
|
x.get_identifiers(x.get_dim_name(0),
|
||
|
sorted=True))
|
||
|
col_ids = (x.get_dim_name(1),
|
||
|
x.get_identifiers(x.get_dim_name(1),
|
||
|
sorted=True))
|
||
|
|
||
|
xout = dataset.Dataset(Xp,
|
||
|
(row_ids, col_ids),
|
||
|
name=x.get_name()+'_diff'+str(alpha))
|
||
|
out.append(xout)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class RandDiffKernelFunction(workflow.Function):
|
||
|
def __init__(self):
|
||
|
workflow.Function.__init__(self, 'diffkernel', 'Rand. Diff.')
|
||
|
|
||
|
def run(self, x, a):
|
||
|
"""x is gene expression data, a is the network.
|
||
|
"""
|
||
|
#sanity check:
|
||
|
g = a.asnetworkx()
|
||
|
genes = x.get_identifiers(x.get_dim_name(1))
|
||
|
# randomise nodelist
|
||
|
genes = [genes[i] for i in cx_utils.randperm(x.shape[1])]
|
||
|
W = nx.adj_matrix(g, nodelist=genes)
|
||
|
X = x.asarray()
|
||
|
Xc, mn_x = cx_utils.mat_center(X, ret_mn=True)
|
||
|
out = []
|
||
|
alpha=1.
|
||
|
beta = 1.0
|
||
|
K = nx_utils.K_diffusion(W, alpha=alpha, beta=beta,normalised=True)
|
||
|
|
||
|
Xp = scipy.dot(Xc, K) + mn_x
|
||
|
# dataset
|
||
|
row_ids = (x.get_dim_name(0),
|
||
|
x.get_identifiers(x.get_dim_name(0),
|
||
|
sorted=True))
|
||
|
col_ids = (x.get_dim_name(1),
|
||
|
x.get_identifiers(x.get_dim_name(1),
|
||
|
sorted=True))
|
||
|
|
||
|
xout = dataset.Dataset(Xp,
|
||
|
(row_ids, col_ids),
|
||
|
name=x.get_name()+'_diff'+str(alpha))
|
||
|
out.append(xout)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class ModKernelFunction(workflow.Function):
|
||
|
def __init__(self):
|
||
|
workflow.Function.__init__(self, 'mokernel', 'Modularity')
|
||
|
|
||
|
def run(self,x,a):
|
||
|
X = x.asarray()
|
||
|
g = a.asnetworkx()
|
||
|
genes = x.get_identifiers(x.get_dim_name(1), sorted=True)
|
||
|
W = nx.adj_matrix(g, nodelist=genes)
|
||
|
out=[]
|
||
|
alpha=.2
|
||
|
Xc,mn_x = cx_utils.mat_center(X, ret_mn=True)
|
||
|
K = nx_utils.K_modularity(W, alpha=alpha)
|
||
|
Xp = scipy.dot(Xc, K)
|
||
|
Xp = Xp + mn_x
|
||
|
|
||
|
# dataset
|
||
|
row_ids = (x.get_dim_name(0),
|
||
|
x.get_identifiers(x.get_dim_name(0),
|
||
|
sorted=True))
|
||
|
col_ids = (x.get_dim_name(1),
|
||
|
x.get_identifiers(x.get_dim_name(1),
|
||
|
sorted=True))
|
||
|
xout = dataset.Dataset(Xp,
|
||
|
(row_ids,col_ids),
|
||
|
name=x.get_name()+'_mod'+str(alpha))
|
||
|
out.append(xout)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class NCBIQuery(workflow.Function):
|
||
|
def __init__(self):
|
||
|
workflow.Function.__init__(self, 'query', 'NCBI')
|
||
|
|
||
|
def run(self, selection):
|
||
|
base = 'http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?'
|
||
|
options = {r'&db=' : 'gene',
|
||
|
r'&cmd=' : 'retrieve',
|
||
|
r'&dopt=' : 'full_report'}
|
||
|
gene_str = ''.join([gene + "+" for gene in selection['gene_id']])
|
||
|
options[r'&list_uids='] = gene_str[:-1]
|
||
|
opt_str = ''.join([key+value for key,value in options.items()])
|
||
|
web_str = base + opt_str
|
||
|
webbrowser.open(web_str)
|
||
|
|
||
|
|
||
|
class KEGGQuery(workflow.Function):
|
||
|
def __init__(self):
|
||
|
workflow.Function.__init__(self, 'query', 'KEGG')
|
||
|
|
||
|
def run(self, selection):
|
||
|
if not selection.has_key('genes') \
|
||
|
or not selection.has_key('orfs'):
|
||
|
return None
|
||
|
|
||
|
base = r'http://www.genome.jp/dbget-bin/www_bget?'
|
||
|
options = {'org' : 'gene'}
|
||
|
org = 'hsa'
|
||
|
gene_str = ''.join([gene + "+" for gene in selection['gene_id']])
|
||
|
gene_str = gene_str[:-1]
|
||
|
gene_str = org + "+" + gene_str
|
||
|
web_str = base + gene_str
|
||
|
webbrowser.open(web_str)
|
||
|
|
||
|
|