Projects/laydi
Projects
/
laydi
Archived
7
0
Fork 0
This repository has been archived on 2024-07-04. You can view files and clone it, but cannot push or open issues or pull requests.
laydi/fluents/lib/engines.py

201 lines
5.5 KiB
Python
Raw Normal View History

2006-12-18 12:59:12 +01:00
"""Module contain algorithms for (burdensome) calculations.
There is no typechecking of any kind here, just focus on speed
"""
from scipy.linalg import svd,norm,inv,pinv,qr
from scipy import dot,empty,eye,newaxis,zeros,sqrt,diag,\
apply_along_axis,mean,ones,randn,empty_like,outer,c_,\
rand,sum,cumsum
def pca(a, aopt, scale='scores', mode='normal'):
""" Principal Component Analysis model
mode:
-- fast : returns smallest dim scaled (T for n<=m, P for n>m )
-- normal : returns all model params and residuals after aopt comp
-- detailed : returns all model params and all residuals
"""
m,n = a.shape
u,s,vt = svd(a, full_matrices=0)
T = u*s
T = T[:,:aopt]
P = vt[:aopt,:].T
if scale=='loads':
tnorm = apply_along_axis(norm, 0, T)
T = T/tnorm
P = P*tnorm
if mode == 'fast':
return {'T':T, 'P':P}
if mode=='detailed':
"""Detailed mode returns residual matrix for all comp.
That is E, is a three-mode matrix: (amax, m, n) """
E = empty((aopt, m, n))
for ai in range(aopt):
e = a - dot(T[:,:ai+1], P[:,:ai+1].T)
E[ai,:,:] = e.copy()
else:
E = a - dot(T,P.T)
return {'T':T, 'P':P, 'E':E}
def pls(a, b, aopt=2, scale='scores', mode='normal', ab=None):
"""Kernel pls for tall/wide matrices.
Fast pls for calibration. Only inefficient for many Y-vars.
"""
m,n = a.shape
if ab!=None:
mm,l = ab.shape
else:
k,l = b.shape
W = empty((n, aopt))
P = empty((n, aopt))
R = empty((n, aopt))
Q = empty((l, aopt))
T = empty((m, aopt))
B = empty((aopt, n, l))
if ab==None:
ab = dot(a.T, b)
for i in range(aopt):
if ab.shape[1]==1:
w = ab
else:
u,s,vh = svd(dot(ab.T, ab))
w = dot(ab,u[:,:1])
w = w/norm(w)
r = w.copy()
if i>0:
for j in range(0,i,1):
r = r - dot(P[:,j].T, w)*R[:,j][:,newaxis]
t = dot(a, r)
tt = norm(t)**2
p = dot(a.T, t)/tt
q = dot(r.T, ab).T/tt
ab = ab - dot(p, q.T)*tt
T[:,i] = t.ravel()
W[:,i] = w.ravel()
P[:,i] = p.ravel()
R[:,i] = r.ravel()
if mode=='fast' and i==aopt-1:
if scale=='loads':
tnorm = apply_along_axis(norm, 0, T)
T = T/tnorm
W = W*tnorm
return {'T':T, 'W':W}
Q[:,i] = q.ravel()
B[i] = dot(R[:,:i+1], Q[:,:i+1].T)
if mode=='detailed':
E = empty((aopt, m, n))
F = empty((aopt, k, l))
for i in range(1,aopt+1,1):
E[i-1] = a - dot(T[:,:i],P[:,:i].T)
F[i-1] = b - dot(T[:,:i],Q[:,:i].T)
else:
E = a - dot(T[:,:aopt], P[:,:aopt].T)
F = b - dot(T[:,:aopt], Q[:,:aopt].T)
if scale=='loads':
tnorm = apply_along_axis(norm, 0, T)
T = T/tnorm
W = W*tnorm
Q = Q*tnorm
P = P*tnorm
return {'B':B, 'Q':Q, 'P':P, 'T':T, 'W':W, 'R':R, 'E':E, 'F':F}
def w_simpls(aat, b, aopt):
""" Simpls for wide matrices.
Fast pls for crossval, used in calc rmsep for wide X
There is no P,W. T is normalised
"""
bb = b.copy()
m,m = aat.shape
U = empty((m, aopt))
T = empty((m, aopt))
H = empty((m, aopt)) #just like W in simpls
PROJ = empty((m, aopt)) #just like R in simpls
for i in range(aopt):
u,s,vh = svd(dot(dot(b.T, aat), b), full_matrices=0)
u = dot(b, u[:,:1]) #y-factor scores
U[:,i] = u.ravel()
t =dot(aat, u)
t = t/norm(t)
T[:,i] = t.ravel()
h = dot(aat, t) #score-weights
H[:,i] = h.ravel()
PROJ[:,:i+1] = dot(T[:,:i+1], inv(dot(T[:,:i+1].T, H[:,:i+1])) )
if i<aopt:
b = b - dot(PROJ[:,:i+1], dot(H[:,:i+1].T,b) )
C = dot(bb.T, T)
return {'T':T,'U':U,'Q':C,'H':H}
def bridge(a, b, aopt, scale='scores', mode='normal', r=0):
"""Undeflated Ridged svd(X'Y)
"""
m, n = a.shape
k, l = b.shape
u,s,vt = svd(b, full_matrices=0)
g0 = dot(u*s, u.T)
g = (1 - r)*g0 + r*eye(m)
ag = dot(a.T, g)
u,s,vt = svd(ag, full_matrices=0)
W = u[:,:aopt]
K = vt[:aopt,:].T
T = dot(a, W)
tnorm = apply_along_axis(norm, 0, T) # norm of T-columns
if mode == 'fast':
if scale=='loads':
T = T/tnorm
W = W*tnorm
return {'T':T, 'W':W}
U = dot(g0, K) #fixme check this
Q = dot(b.T, dot(T, inv(dot(T.T,T)) ))
B = zeros((aopt, n, l))
for i in range(aopt):
B[i] = dot(W[:,:i+1], Q[:,:i+1].T)
# leverages
# fixme: probably need an orthogonal basis for row-space leverage
# T (scores) are not orthogonal
# Using a qr decomp to get an orthonormal basis for row-space
#Tq = qr(T)[0]
#s_lev,v_lev = leverage(aopt,Tq,W)
# explained variance
#var_x, exp_var_x = variances(a,T,W)
#qnorm = apply_along_axis(norm, 0, Q)
#var_y, exp_var_y = variances(b,U,Q/qnorm)
if mode == 'detailed':
E = empty((aopt, m, n))
F = empty((aopt, k, l))
for i in range(aopt):
E[i] = a - dot(T[:,:i+1], W[:,:i+1].T)
F[i] = b - dot(a, B[i])
else: #normal
F = b - dot(a, B[-1])
E = a - dot(T, W.T)
if scale=='loads':
T = T/tnorm
W = W*tnorm
Q = Q*tnorm
return {'B':B, 'W':W, 'T':T, 'Q':Q, 'E':E, 'F':F, 'U':U, 'P':W}