dibbler/sqlalchemy/orm/query.py

2470 lines
93 KiB
Python

# orm/query.py
# Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010 Michael Bayer mike_mp@zzzcomputing.com
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php
"""The Query class and support.
Defines the :class:`~sqlalchemy.orm.query.Query` class, the central construct used by
the ORM to construct database queries.
The ``Query`` class should not be confused with the
:class:`~sqlalchemy.sql.expression.Select` class, which defines database SELECT
operations at the SQL (non-ORM) level. ``Query`` differs from ``Select`` in
that it returns ORM-mapped objects and interacts with an ORM session, whereas
the ``Select`` construct interacts directly with the database to return
iterable result sets.
"""
from itertools import chain
from operator import itemgetter
from sqlalchemy import sql, util, log, schema
from sqlalchemy import exc as sa_exc
from sqlalchemy.orm import exc as orm_exc
from sqlalchemy.sql import util as sql_util
from sqlalchemy.sql import expression, visitors, operators
from sqlalchemy.orm import (
attributes, interfaces, mapper, object_mapper, evaluator,
)
from sqlalchemy.orm.util import (
AliasedClass, ORMAdapter, _entity_descriptor, _entity_info,
_is_aliased_class, _is_mapped_class, _orm_columns, _orm_selectable,
join as orm_join,
)
__all__ = ['Query', 'QueryContext', 'aliased']
aliased = AliasedClass
def _generative(*assertions):
"""Mark a method as generative."""
@util.decorator
def generate(fn, *args, **kw):
self = args[0]._clone()
for assertion in assertions:
assertion(self, fn.func_name)
fn(self, *args[1:], **kw)
return self
return generate
class Query(object):
"""ORM-level SQL construction object."""
_enable_eagerloads = True
_enable_assertions = True
_with_labels = False
_criterion = None
_yield_per = None
_lockmode = None
_order_by = False
_group_by = False
_having = None
_distinct = False
_offset = None
_limit = None
_statement = None
_correlate = frozenset()
_populate_existing = False
_version_check = False
_autoflush = True
_current_path = ()
_only_load_props = None
_refresh_state = None
_from_obj = ()
_filter_aliases = None
_from_obj_alias = None
_joinpath = _joinpoint = util.frozendict()
_execution_options = util.frozendict()
_params = util.frozendict()
_attributes = util.frozendict()
_with_options = ()
_with_hints = ()
def __init__(self, entities, session=None):
self.session = session
self._polymorphic_adapters = {}
self._set_entities(entities)
def _set_entities(self, entities, entity_wrapper=None):
if entity_wrapper is None:
entity_wrapper = _QueryEntity
self._entities = []
for ent in util.to_list(entities):
entity_wrapper(self, ent)
self._setup_aliasizers(self._entities)
def _setup_aliasizers(self, entities):
if hasattr(self, '_mapper_adapter_map'):
# usually safe to share a single map, but copying to prevent
# subtle leaks if end-user is reusing base query with arbitrary
# number of aliased() objects
self._mapper_adapter_map = d = self._mapper_adapter_map.copy()
else:
self._mapper_adapter_map = d = {}
for ent in entities:
for entity in ent.entities:
if entity not in d:
mapper, selectable, is_aliased_class = _entity_info(entity)
if not is_aliased_class and mapper.with_polymorphic:
with_polymorphic = mapper._with_polymorphic_mappers
if mapper.mapped_table not in self._polymorphic_adapters:
self.__mapper_loads_polymorphically_with(mapper,
sql_util.ColumnAdapter(selectable, mapper._equivalent_columns))
adapter = None
elif is_aliased_class:
adapter = sql_util.ColumnAdapter(selectable, mapper._equivalent_columns)
with_polymorphic = None
else:
with_polymorphic = adapter = None
d[entity] = (mapper, adapter, selectable, is_aliased_class, with_polymorphic)
ent.setup_entity(entity, *d[entity])
def __mapper_loads_polymorphically_with(self, mapper, adapter):
for m2 in mapper._with_polymorphic_mappers:
self._polymorphic_adapters[m2] = adapter
for m in m2.iterate_to_root():
self._polymorphic_adapters[m.mapped_table] = self._polymorphic_adapters[m.local_table] = adapter
def _set_select_from(self, *obj):
fa = []
for from_obj in obj:
if isinstance(from_obj, expression._SelectBaseMixin):
from_obj = from_obj.alias()
fa.append(from_obj)
self._from_obj = tuple(fa)
if len(self._from_obj) == 1 and \
isinstance(self._from_obj[0], expression.Alias):
equivs = self.__all_equivs()
self._from_obj_alias = sql_util.ColumnAdapter(self._from_obj[0], equivs)
def _get_polymorphic_adapter(self, entity, selectable):
self.__mapper_loads_polymorphically_with(entity.mapper,
sql_util.ColumnAdapter(selectable, entity.mapper._equivalent_columns))
def _reset_polymorphic_adapter(self, mapper):
for m2 in mapper._with_polymorphic_mappers:
self._polymorphic_adapters.pop(m2, None)
for m in m2.iterate_to_root():
self._polymorphic_adapters.pop(m.mapped_table, None)
self._polymorphic_adapters.pop(m.local_table, None)
def __adapt_polymorphic_element(self, element):
if isinstance(element, expression.FromClause):
search = element
elif hasattr(element, 'table'):
search = element.table
else:
search = None
if search is not None:
alias = self._polymorphic_adapters.get(search, None)
if alias:
return alias.adapt_clause(element)
def __replace_element(self, adapters):
def replace(elem):
if '_halt_adapt' in elem._annotations:
return elem
for adapter in adapters:
e = adapter(elem)
if e is not None:
return e
return replace
def __replace_orm_element(self, adapters):
def replace(elem):
if '_halt_adapt' in elem._annotations:
return elem
if "_orm_adapt" in elem._annotations or "parententity" in elem._annotations:
for adapter in adapters:
e = adapter(elem)
if e is not None:
return e
return replace
@_generative()
def _adapt_all_clauses(self):
self._disable_orm_filtering = True
def _adapt_col_list(self, cols):
return [
self._adapt_clause(expression._literal_as_text(o), True, True)
for o in cols
]
def _adapt_clause(self, clause, as_filter, orm_only):
adapters = []
if as_filter and self._filter_aliases:
for fa in self._filter_aliases._visitor_iterator:
adapters.append(fa.replace)
if self._from_obj_alias:
adapters.append(self._from_obj_alias.replace)
if self._polymorphic_adapters:
adapters.append(self.__adapt_polymorphic_element)
if not adapters:
return clause
if getattr(self, '_disable_orm_filtering', not orm_only):
return visitors.replacement_traverse(
clause,
{'column_collections':False},
self.__replace_element(adapters)
)
else:
return visitors.replacement_traverse(
clause,
{'column_collections':False},
self.__replace_orm_element(adapters)
)
def _entity_zero(self):
return self._entities[0]
def _mapper_zero(self):
return self._entity_zero().entity_zero
def _extension_zero(self):
ent = self._entity_zero()
return getattr(ent, 'extension', ent.mapper.extension)
@property
def _mapper_entities(self):
# TODO: this is wrong, its hardcoded to "priamry entity" when
# for the case of __all_equivs() it should not be
# the name of this accessor is wrong too
for ent in self._entities:
if hasattr(ent, 'primary_entity'):
yield ent
def _joinpoint_zero(self):
return self._joinpoint.get('_joinpoint_entity', self._entity_zero().entity_zero)
def _mapper_zero_or_none(self):
if not getattr(self._entities[0], 'primary_entity', False):
return None
return self._entities[0].mapper
def _only_mapper_zero(self, rationale=None):
if len(self._entities) > 1:
raise sa_exc.InvalidRequestError(
rationale or "This operation requires a Query against a single mapper."
)
return self._mapper_zero()
def _only_entity_zero(self, rationale=None):
if len(self._entities) > 1:
raise sa_exc.InvalidRequestError(
rationale or "This operation requires a Query against a single mapper."
)
return self._entity_zero()
def _generate_mapper_zero(self):
if not getattr(self._entities[0], 'primary_entity', False):
raise sa_exc.InvalidRequestError("No primary mapper set up for this Query.")
entity = self._entities[0]._clone()
self._entities = [entity] + self._entities[1:]
return entity
def __all_equivs(self):
equivs = {}
for ent in self._mapper_entities:
equivs.update(ent.mapper._equivalent_columns)
return equivs
def _get_condition(self):
self._order_by = self._distinct = False
return self._no_criterion_condition("get")
def _no_criterion_condition(self, meth):
if not self._enable_assertions:
return
if self._criterion is not None or self._statement is not None or self._from_obj or \
self._limit is not None or self._offset is not None or \
self._group_by or self._order_by or self._distinct:
raise sa_exc.InvalidRequestError(
"Query.%s() being called on a "
"Query with existing criterion. " % meth)
self._from_obj = ()
self._statement = self._criterion = None
self._order_by = self._group_by = self._distinct = False
def _no_clauseelement_condition(self, meth):
if not self._enable_assertions:
return
if self._order_by:
raise sa_exc.InvalidRequestError(
"Query.%s() being called on a "
"Query with existing criterion. " % meth)
self._no_criterion_condition(meth)
def _no_statement_condition(self, meth):
if not self._enable_assertions:
return
if self._statement:
raise sa_exc.InvalidRequestError(
("Query.%s() being called on a Query with an existing full "
"statement - can't apply criterion.") % meth)
def _no_limit_offset(self, meth):
if not self._enable_assertions:
return
if self._limit is not None or self._offset is not None:
raise sa_exc.InvalidRequestError(
"Query.%s() being called on a Query which already has LIMIT or OFFSET applied. "
"To modify the row-limited results of a Query, call from_self() first. "
"Otherwise, call %s() before limit() or offset() are applied." % (meth, meth)
)
def _no_select_modifiers(self, meth):
if not self._enable_assertions:
return
for attr, methname, notset in (
('_limit', 'limit()', None),
('_offset', 'offset()', None),
('_order_by', 'order_by()', False),
('_group_by', 'group_by()', False),
('_distinct', 'distinct()', False),
):
if getattr(self, attr) is not notset:
raise sa_exc.InvalidRequestError(
"Can't call Query.%s() when %s has been called" % (meth, methname)
)
def _get_options(self, populate_existing=None,
version_check=None,
only_load_props=None,
refresh_state=None):
if populate_existing:
self._populate_existing = populate_existing
if version_check:
self._version_check = version_check
if refresh_state:
self._refresh_state = refresh_state
if only_load_props:
self._only_load_props = set(only_load_props)
return self
def _clone(self):
cls = self.__class__
q = cls.__new__(cls)
q.__dict__ = self.__dict__.copy()
return q
@property
def statement(self):
"""The full SELECT statement represented by this Query.
The statement by default will not have disambiguating labels
applied to the construct unless with_labels(True) is called
first.
"""
return self._compile_context(labels=self._with_labels).\
statement._annotate({'_halt_adapt': True})
def subquery(self):
"""return the full SELECT statement represented by this Query,
embedded within an Alias.
Eager JOIN generation within the query is disabled.
The statement by default will not have disambiguating labels
applied to the construct unless with_labels(True) is called
first.
"""
return self.enable_eagerloads(False).statement.alias()
def __clause_element__(self):
return self.enable_eagerloads(False).with_labels().statement
@_generative()
def enable_eagerloads(self, value):
"""Control whether or not eager joins and subqueries are
rendered.
When set to False, the returned Query will not render
eager joins regardless of :func:`~sqlalchemy.orm.joinedload`,
:func:`~sqlalchemy.orm.subqueryload` options
or mapper-level ``lazy='joined'``/``lazy='subquery'``
configurations.
This is used primarily when nesting the Query's
statement into a subquery or other
selectable.
"""
self._enable_eagerloads = value
@_generative()
def with_labels(self):
"""Apply column labels to the return value of Query.statement.
Indicates that this Query's `statement` accessor should return
a SELECT statement that applies labels to all columns in the
form <tablename>_<columnname>; this is commonly used to
disambiguate columns from multiple tables which have the same
name.
When the `Query` actually issues SQL to load rows, it always
uses column labeling.
"""
self._with_labels = True
@_generative()
def enable_assertions(self, value):
"""Control whether assertions are generated.
When set to False, the returned Query will
not assert its state before certain operations,
including that LIMIT/OFFSET has not been applied
when filter() is called, no criterion exists
when get() is called, and no "from_statement()"
exists when filter()/order_by()/group_by() etc.
is called. This more permissive mode is used by
custom Query subclasses to specify criterion or
other modifiers outside of the usual usage patterns.
Care should be taken to ensure that the usage
pattern is even possible. A statement applied
by from_statement() will override any criterion
set by filter() or order_by(), for example.
"""
self._enable_assertions = value
@property
def whereclause(self):
"""The WHERE criterion for this Query."""
return self._criterion
@_generative()
def _with_current_path(self, path):
"""indicate that this query applies to objects loaded within a certain path.
Used by deferred loaders (see strategies.py) which transfer query
options from an originating query to a newly generated query intended
for the deferred load.
"""
self._current_path = path
@_generative(_no_clauseelement_condition)
def with_polymorphic(self, cls_or_mappers, selectable=None, discriminator=None):
"""Load columns for descendant mappers of this Query's mapper.
Using this method will ensure that each descendant mapper's
tables are included in the FROM clause, and will allow filter()
criterion to be used against those tables. The resulting
instances will also have those columns already loaded so that
no "post fetch" of those columns will be required.
:param cls_or_mappers: a single class or mapper, or list of class/mappers,
which inherit from this Query's mapper. Alternatively, it
may also be the string ``'*'``, in which case all descending
mappers will be added to the FROM clause.
:param selectable: a table or select() statement that will
be used in place of the generated FROM clause. This argument
is required if any of the desired mappers use concrete table
inheritance, since SQLAlchemy currently cannot generate UNIONs
among tables automatically. If used, the ``selectable``
argument must represent the full set of tables and columns mapped
by every desired mapper. Otherwise, the unaccounted mapped columns
will result in their table being appended directly to the FROM
clause which will usually lead to incorrect results.
:param discriminator: a column to be used as the "discriminator"
column for the given selectable. If not given, the polymorphic_on
attribute of the mapper will be used, if any. This is useful
for mappers that don't have polymorphic loading behavior by default,
such as concrete table mappers.
"""
entity = self._generate_mapper_zero()
entity.set_with_polymorphic(self, cls_or_mappers, selectable=selectable, discriminator=discriminator)
@_generative()
def yield_per(self, count):
"""Yield only ``count`` rows at a time.
WARNING: use this method with caution; if the same instance is present
in more than one batch of rows, end-user changes to attributes will be
overwritten.
In particular, it's usually impossible to use this setting with
eagerly loaded collections (i.e. any lazy='joined' or 'subquery')
since those collections will be cleared for a new load when
encountered in a subsequent result batch. In the case of 'subquery'
loading, the full result for all rows is fetched which generally
defeats the purpose of :meth:`~sqlalchemy.orm.query.Query.yield_per`.
Also note that many DBAPIs do not "stream" results, pre-buffering
all rows before making them available, including mysql-python and
psycopg2. :meth:`~sqlalchemy.orm.query.Query.yield_per` will also
set the ``stream_results`` execution
option to ``True``, which currently is only understood by psycopg2
and causes server side cursors to be used.
"""
self._yield_per = count
self._execution_options = self._execution_options.copy()
self._execution_options['stream_results'] = True
def get(self, ident):
"""Return an instance of the object based on the given identifier, or None if not found.
The `ident` argument is a scalar or tuple of primary key column values
in the order of the table def's primary key columns.
"""
# convert composite types to individual args
if hasattr(ident, '__composite_values__'):
ident = ident.__composite_values__()
key = self._only_mapper_zero(
"get() can only be used against a single mapped class."
).identity_key_from_primary_key(ident)
return self._get(key, ident)
@_generative()
def correlate(self, *args):
self._correlate = self._correlate.union(_orm_selectable(s) for s in args)
@_generative()
def autoflush(self, setting):
"""Return a Query with a specific 'autoflush' setting.
Note that a Session with autoflush=False will
not autoflush, even if this flag is set to True at the
Query level. Therefore this flag is usually used only
to disable autoflush for a specific Query.
"""
self._autoflush = setting
@_generative()
def populate_existing(self):
"""Return a Query that will refresh all instances loaded.
This includes all entities accessed from the database, including
secondary entities, eagerly-loaded collection items.
All changes present on entities which are already present in the
session will be reset and the entities will all be marked "clean".
An alternative to populate_existing() is to expire the Session
fully using session.expire_all().
"""
self._populate_existing = True
def with_parent(self, instance, property=None):
"""Add a join criterion corresponding to a relationship to the given
parent instance.
instance
a persistent or detached instance which is related to class
represented by this query.
property
string name of the property which relates this query's class to the
instance. if None, the method will attempt to find a suitable
property.
Currently, this method only works with immediate parent relationships,
but in the future may be enhanced to work across a chain of parent
mappers.
"""
from sqlalchemy.orm import properties
mapper = object_mapper(instance)
if property is None:
for prop in mapper.iterate_properties:
if isinstance(prop, properties.PropertyLoader) and prop.mapper is self._mapper_zero():
break
else:
raise sa_exc.InvalidRequestError(
"Could not locate a property which relates instances "
"of class '%s' to instances of class '%s'" %
(self._mapper_zero().class_.__name__, instance.__class__.__name__)
)
else:
prop = mapper.get_property(property, resolve_synonyms=True)
return self.filter(prop.compare(operators.eq, instance, value_is_parent=True))
@_generative()
def add_entity(self, entity, alias=None):
"""add a mapped entity to the list of result columns to be returned."""
if alias is not None:
entity = aliased(entity, alias)
self._entities = list(self._entities)
m = _MapperEntity(self, entity)
self._setup_aliasizers([m])
def from_self(self, *entities):
"""return a Query that selects from this Query's SELECT statement.
\*entities - optional list of entities which will replace
those being selected.
"""
fromclause = self.with_labels().enable_eagerloads(False).\
statement.correlate(None)
q = self._from_selectable(fromclause)
if entities:
q._set_entities(entities)
return q
@_generative()
def _from_selectable(self, fromclause):
for attr in ('_statement', '_criterion', '_order_by', '_group_by',
'_limit', '_offset', '_joinpath', '_joinpoint',
'_distinct'
):
self.__dict__.pop(attr, None)
self._set_select_from(fromclause)
old_entities = self._entities
self._entities = []
for e in old_entities:
e.adapt_to_selectable(self, self._from_obj[0])
def values(self, *columns):
"""Return an iterator yielding result tuples corresponding to the given list of columns"""
if not columns:
return iter(())
q = self._clone()
q._set_entities(columns, entity_wrapper=_ColumnEntity)
if not q._yield_per:
q._yield_per = 10
return iter(q)
_values = values
def value(self, column):
"""Return a scalar result corresponding to the given column expression."""
try:
# Py3K
#return self.values(column).__next__()[0]
# Py2K
return self.values(column).next()[0]
# end Py2K
except StopIteration:
return None
@_generative()
def add_columns(self, *column):
"""Add one or more column expressions to the list
of result columns to be returned."""
self._entities = list(self._entities)
l = len(self._entities)
for c in column:
_ColumnEntity(self, c)
# _ColumnEntity may add many entities if the
# given arg is a FROM clause
self._setup_aliasizers(self._entities[l:])
@util.pending_deprecation("add_column() superceded by add_columns()")
def add_column(self, column):
"""Add a column expression to the list of result columns
to be returned."""
return self.add_columns(column)
def options(self, *args):
"""Return a new Query object, applying the given list of
MapperOptions.
"""
return self._options(False, *args)
def _conditional_options(self, *args):
return self._options(True, *args)
@_generative()
def _options(self, conditional, *args):
# most MapperOptions write to the '_attributes' dictionary,
# so copy that as well
self._attributes = self._attributes.copy()
opts = tuple(util.flatten_iterator(args))
self._with_options = self._with_options + opts
if conditional:
for opt in opts:
opt.process_query_conditionally(self)
else:
for opt in opts:
opt.process_query(self)
@_generative()
def with_hint(self, selectable, text, dialect_name=None):
"""Add an indexing hint for the given entity or selectable to
this :class:`Query`.
Functionality is passed straight through to
:meth:`~sqlalchemy.sql.expression.Select.with_hint`,
with the addition that ``selectable`` can be a
:class:`Table`, :class:`Alias`, or ORM entity / mapped class
/etc.
"""
mapper, selectable, is_aliased_class = _entity_info(selectable)
self._with_hints += ((selectable, text, dialect_name),)
@_generative()
def execution_options(self, **kwargs):
""" Set non-SQL options which take effect during execution.
The options are the same as those accepted by
:meth:`sqlalchemy.sql.expression.Executable.execution_options`.
Note that the ``stream_results`` execution option is enabled
automatically if the :meth:`~sqlalchemy.orm.query.Query.yield_per()`
method is used.
"""
_execution_options = self._execution_options.copy()
for key, value in kwargs.items():
_execution_options[key] = value
self._execution_options = _execution_options
@_generative()
def with_lockmode(self, mode):
"""Return a new Query object with the specified locking mode."""
self._lockmode = mode
@_generative()
def params(self, *args, **kwargs):
"""add values for bind parameters which may have been specified in filter().
parameters may be specified using \**kwargs, or optionally a single dictionary
as the first positional argument. The reason for both is that \**kwargs is
convenient, however some parameter dictionaries contain unicode keys in which case
\**kwargs cannot be used.
"""
if len(args) == 1:
kwargs.update(args[0])
elif len(args) > 0:
raise sa_exc.ArgumentError("params() takes zero or one positional argument, which is a dictionary.")
self._params = self._params.copy()
self._params.update(kwargs)
@_generative(_no_statement_condition, _no_limit_offset)
def filter(self, criterion):
"""apply the given filtering criterion to the query and return the newly resulting ``Query``
the criterion is any sql.ClauseElement applicable to the WHERE clause of a select.
"""
if isinstance(criterion, basestring):
criterion = sql.text(criterion)
if criterion is not None and not isinstance(criterion, sql.ClauseElement):
raise sa_exc.ArgumentError("filter() argument must be of type sqlalchemy.sql.ClauseElement or string")
criterion = self._adapt_clause(criterion, True, True)
if self._criterion is not None:
self._criterion = self._criterion & criterion
else:
self._criterion = criterion
def filter_by(self, **kwargs):
"""apply the given filtering criterion to the query and return the newly resulting ``Query``."""
clauses = [_entity_descriptor(self._joinpoint_zero(), key)[0] == value
for key, value in kwargs.iteritems()]
return self.filter(sql.and_(*clauses))
@_generative(_no_statement_condition, _no_limit_offset)
@util.accepts_a_list_as_starargs(list_deprecation='deprecated')
def order_by(self, *criterion):
"""apply one or more ORDER BY criterion to the query and return the newly resulting ``Query``"""
if len(criterion) == 1 and criterion[0] is None:
self._order_by = None
else:
criterion = self._adapt_col_list(criterion)
if self._order_by is False or self._order_by is None:
self._order_by = criterion
else:
self._order_by = self._order_by + criterion
@_generative(_no_statement_condition, _no_limit_offset)
@util.accepts_a_list_as_starargs(list_deprecation='deprecated')
def group_by(self, *criterion):
"""apply one or more GROUP BY criterion to the query and return the newly resulting ``Query``"""
criterion = list(chain(*[_orm_columns(c) for c in criterion]))
criterion = self._adapt_col_list(criterion)
if self._group_by is False:
self._group_by = criterion
else:
self._group_by = self._group_by + criterion
@_generative(_no_statement_condition, _no_limit_offset)
def having(self, criterion):
"""apply a HAVING criterion to the query and return the newly resulting ``Query``."""
if isinstance(criterion, basestring):
criterion = sql.text(criterion)
if criterion is not None and not isinstance(criterion, sql.ClauseElement):
raise sa_exc.ArgumentError("having() argument must be of type sqlalchemy.sql.ClauseElement or string")
criterion = self._adapt_clause(criterion, True, True)
if self._having is not None:
self._having = self._having & criterion
else:
self._having = criterion
def union(self, *q):
"""Produce a UNION of this Query against one or more queries.
e.g.::
q1 = sess.query(SomeClass).filter(SomeClass.foo=='bar')
q2 = sess.query(SomeClass).filter(SomeClass.bar=='foo')
q3 = q1.union(q2)
The method accepts multiple Query objects so as to control
the level of nesting. A series of ``union()`` calls such as::
x.union(y).union(z).all()
will nest on each ``union()``, and produces::
SELECT * FROM (SELECT * FROM (SELECT * FROM X UNION SELECT * FROM y) UNION SELECT * FROM Z)
Whereas::
x.union(y, z).all()
produces::
SELECT * FROM (SELECT * FROM X UNION SELECT * FROM y UNION SELECT * FROM Z)
"""
return self._from_selectable(
expression.union(*([self]+ list(q))))
def union_all(self, *q):
"""Produce a UNION ALL of this Query against one or more queries.
Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that
method for usage examples.
"""
return self._from_selectable(
expression.union_all(*([self]+ list(q)))
)
def intersect(self, *q):
"""Produce an INTERSECT of this Query against one or more queries.
Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that
method for usage examples.
"""
return self._from_selectable(
expression.intersect(*([self]+ list(q)))
)
def intersect_all(self, *q):
"""Produce an INTERSECT ALL of this Query against one or more queries.
Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that
method for usage examples.
"""
return self._from_selectable(
expression.intersect_all(*([self]+ list(q)))
)
def except_(self, *q):
"""Produce an EXCEPT of this Query against one or more queries.
Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that
method for usage examples.
"""
return self._from_selectable(
expression.except_(*([self]+ list(q)))
)
def except_all(self, *q):
"""Produce an EXCEPT ALL of this Query against one or more queries.
Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that
method for usage examples.
"""
return self._from_selectable(
expression.except_all(*([self]+ list(q)))
)
@util.accepts_a_list_as_starargs(list_deprecation='deprecated')
def join(self, *props, **kwargs):
"""Create a join against this ``Query`` object's criterion
and apply generatively, returning the newly resulting ``Query``.
Each element in \*props may be:
* a string property name, i.e. "rooms". This will join along the
relationship of the same name from this Query's "primary" mapper, if
one is present.
* a class-mapped attribute, i.e. Houses.rooms. This will create a
join from "Houses" table to that of the "rooms" relationship.
* a 2-tuple containing a target class or selectable, and an "ON"
clause. The ON clause can be the property name/ attribute like
above, or a SQL expression.
e.g.::
# join along string attribute names
session.query(Company).join('employees')
session.query(Company).join('employees', 'tasks')
# join the Person entity to an alias of itself,
# along the "friends" relationship
PAlias = aliased(Person)
session.query(Person).join((Palias, Person.friends))
# join from Houses to the "rooms" attribute on the
# "Colonials" subclass of Houses, then join to the
# "closets" relationship on Room
session.query(Houses).join(Colonials.rooms, Room.closets)
# join from Company entities to the "employees" collection,
# using "people JOIN engineers" as the target. Then join
# to the "computers" collection on the Engineer entity.
session.query(Company).join((people.join(engineers), 'employees'), Engineer.computers)
# join from Articles to Keywords, using the "keywords" attribute.
# assume this is a many-to-many relationship.
session.query(Article).join(Article.keywords)
# same thing, but spelled out entirely explicitly
# including the association table.
session.query(Article).join(
(article_keywords, Articles.id==article_keywords.c.article_id),
(Keyword, Keyword.id==article_keywords.c.keyword_id)
)
\**kwargs include:
aliased - when joining, create anonymous aliases of each table. This is
used for self-referential joins or multiple joins to the same table.
Consider usage of the aliased(SomeClass) construct as a more explicit
approach to this.
from_joinpoint - when joins are specified using string property names,
locate the property from the mapper found in the most recent previous
join() call, instead of from the root entity.
"""
aliased, from_joinpoint = kwargs.pop('aliased', False), kwargs.pop('from_joinpoint', False)
if kwargs:
raise TypeError("unknown arguments: %s" % ','.join(kwargs.iterkeys()))
return self._join(props,
outerjoin=False, create_aliases=aliased,
from_joinpoint=from_joinpoint)
@util.accepts_a_list_as_starargs(list_deprecation='deprecated')
def outerjoin(self, *props, **kwargs):
"""Create a left outer join against this ``Query`` object's criterion
and apply generatively, retunring the newly resulting ``Query``.
Usage is the same as the ``join()`` method.
"""
aliased, from_joinpoint = kwargs.pop('aliased', False), kwargs.pop('from_joinpoint', False)
if kwargs:
raise TypeError("unknown arguments: %s" % ','.join(kwargs.iterkeys()))
return self._join(props,
outerjoin=True, create_aliases=aliased,
from_joinpoint=from_joinpoint)
@_generative(_no_statement_condition, _no_limit_offset)
def _join(self, keys, outerjoin, create_aliases, from_joinpoint):
"""consumes arguments from join() or outerjoin(), places them into a consistent
format with which to form the actual JOIN constructs.
"""
self._polymorphic_adapters = self._polymorphic_adapters.copy()
if not from_joinpoint:
self._reset_joinpoint()
for arg1 in util.to_list(keys):
if isinstance(arg1, tuple):
arg1, arg2 = arg1
else:
arg2 = None
# determine onclause/right_entity. there
# is a little bit of legacy behavior still at work here
# which means they might be in either order. may possibly
# lock this down to (right_entity, onclause) in 0.6.
if isinstance(arg1, (interfaces.PropComparator, basestring)):
right_entity, onclause = arg2, arg1
else:
right_entity, onclause = arg1, arg2
left_entity = prop = None
if isinstance(onclause, basestring):
left_entity = self._joinpoint_zero()
descriptor, prop = _entity_descriptor(left_entity, onclause)
onclause = descriptor
# check for q.join(Class.propname, from_joinpoint=True)
# and Class is that of the current joinpoint
elif from_joinpoint and isinstance(onclause, interfaces.PropComparator):
left_entity = onclause.parententity
left_mapper, left_selectable, left_is_aliased = \
_entity_info(self._joinpoint_zero())
if left_mapper is left_entity:
left_entity = self._joinpoint_zero()
descriptor, prop = _entity_descriptor(left_entity, onclause.key)
onclause = descriptor
if isinstance(onclause, interfaces.PropComparator):
if right_entity is None:
right_entity = onclause.property.mapper
of_type = getattr(onclause, '_of_type', None)
if of_type:
right_entity = of_type
else:
right_entity = onclause.property.mapper
left_entity = onclause.parententity
prop = onclause.property
if not isinstance(onclause, attributes.QueryableAttribute):
onclause = prop
if not create_aliases:
# check for this path already present.
# don't render in that case.
if (left_entity, right_entity, prop.key) in self._joinpoint:
self._joinpoint = self._joinpoint[(left_entity, right_entity, prop.key)]
continue
elif onclause is not None and right_entity is None:
# TODO: no coverage here
raise NotImplementedError("query.join(a==b) not supported.")
self._join_left_to_right(
left_entity,
right_entity, onclause,
outerjoin, create_aliases, prop)
def _join_left_to_right(self, left, right, onclause, outerjoin, create_aliases, prop):
"""append a JOIN to the query's from clause."""
if left is None:
left = self._joinpoint_zero()
if left is right and \
not create_aliases:
raise sa_exc.InvalidRequestError(
"Can't construct a join from %s to %s, they are the same entity" %
(left, right))
left_mapper, left_selectable, left_is_aliased = _entity_info(left)
right_mapper, right_selectable, is_aliased_class = _entity_info(right)
if right_mapper and prop and not right_mapper.common_parent(prop.mapper):
raise sa_exc.InvalidRequestError(
"Join target %s does not correspond to "
"the right side of join condition %s" % (right, onclause)
)
if not right_mapper and prop:
right_mapper = prop.mapper
need_adapter = False
if right_mapper and right is right_selectable:
if not right_selectable.is_derived_from(right_mapper.mapped_table):
raise sa_exc.InvalidRequestError(
"Selectable '%s' is not derived from '%s'" %
(right_selectable.description, right_mapper.mapped_table.description))
if not isinstance(right_selectable, expression.Alias):
right_selectable = right_selectable.alias()
right = aliased(right_mapper, right_selectable)
need_adapter = True
aliased_entity = right_mapper and \
not is_aliased_class and \
(
right_mapper.with_polymorphic or
isinstance(right_mapper.mapped_table, expression.Join)
)
if not need_adapter and (create_aliases or aliased_entity):
right = aliased(right)
need_adapter = True
# if joining on a MapperProperty path,
# track the path to prevent redundant joins
if not create_aliases and prop:
self._joinpoint = jp = {
'_joinpoint_entity':right,
'prev':((left, right, prop.key), self._joinpoint)
}
# copy backwards to the root of the _joinpath
# dict, so that no existing dict in the path is mutated
while 'prev' in jp:
f, prev = jp['prev']
prev = prev.copy()
prev[f] = jp
jp['prev'] = (f, prev)
jp = prev
self._joinpath = jp
else:
self._joinpoint = {
'_joinpoint_entity':right
}
# if an alias() of the right side was generated here,
# apply an adapter to all subsequent filter() calls
# until reset_joinpoint() is called.
if need_adapter:
self._filter_aliases = ORMAdapter(right,
equivalents=right_mapper._equivalent_columns, chain_to=self._filter_aliases)
# if the onclause is a ClauseElement, adapt it with any
# adapters that are in place right now
if isinstance(onclause, expression.ClauseElement):
onclause = self._adapt_clause(onclause, True, True)
# if an alias() on the right side was generated,
# which is intended to wrap a the right side in a subquery,
# ensure that columns retrieved from this target in the result
# set are also adapted.
if aliased_entity:
self.__mapper_loads_polymorphically_with(
right_mapper,
ORMAdapter(
right,
equivalents=right_mapper._equivalent_columns
)
)
join_to_left = not is_aliased_class and not left_is_aliased
if self._from_obj:
replace_clause_index, clause = sql_util.find_join_source(
self._from_obj,
left_selectable)
if clause is not None:
# the entire query's FROM clause is an alias of itself (i.e. from_self(), similar).
# if the left clause is that one, ensure it aliases to the left side.
if self._from_obj_alias and clause is self._from_obj[0]:
join_to_left = True
clause = orm_join(clause,
right,
onclause, isouter=outerjoin,
join_to_left=join_to_left)
self._from_obj = \
self._from_obj[:replace_clause_index] + \
(clause, ) + \
self._from_obj[replace_clause_index + 1:]
return
if left_mapper:
for ent in self._entities:
if ent.corresponds_to(left):
clause = ent.selectable
break
else:
clause = left
else:
clause = None
if clause is None:
raise sa_exc.InvalidRequestError("Could not find a FROM clause to join from")
clause = orm_join(clause, right, onclause, isouter=outerjoin, join_to_left=join_to_left)
self._from_obj = self._from_obj + (clause,)
def _reset_joinpoint(self):
self._joinpoint = self._joinpath
self._filter_aliases = None
@_generative(_no_statement_condition)
def reset_joinpoint(self):
"""return a new Query reset the 'joinpoint' of this Query reset
back to the starting mapper. Subsequent generative calls will
be constructed from the new joinpoint.
Note that each call to join() or outerjoin() also starts from
the root.
"""
self._reset_joinpoint()
@_generative(_no_clauseelement_condition)
def select_from(self, *from_obj):
"""Set the `from_obj` parameter of the query and return the newly
resulting ``Query``. This replaces the table which this Query selects
from with the given table.
``select_from()`` also accepts class arguments. Though usually not necessary,
can ensure that the full selectable of the given mapper is applied, e.g.
for joined-table mappers.
"""
obj = []
for fo in from_obj:
if _is_mapped_class(fo):
mapper, selectable, is_aliased_class = _entity_info(fo)
obj.append(selectable)
elif not isinstance(fo, expression.FromClause):
raise sa_exc.ArgumentError("select_from() accepts FromClause objects only.")
else:
obj.append(fo)
self._set_select_from(*obj)
def __getitem__(self, item):
if isinstance(item, slice):
start, stop, step = util.decode_slice(item)
if isinstance(stop, int) and isinstance(start, int) and stop - start <= 0:
return []
# perhaps we should execute a count() here so that we
# can still use LIMIT/OFFSET ?
elif (isinstance(start, int) and start < 0) \
or (isinstance(stop, int) and stop < 0):
return list(self)[item]
res = self.slice(start, stop)
if step is not None:
return list(res)[None:None:item.step]
else:
return list(res)
else:
return list(self[item:item+1])[0]
@_generative(_no_statement_condition)
def slice(self, start, stop):
"""apply LIMIT/OFFSET to the ``Query`` based on a "
"range and return the newly resulting ``Query``."""
if start is not None and stop is not None:
self._offset = (self._offset or 0) + start
self._limit = stop - start
elif start is None and stop is not None:
self._limit = stop
elif start is not None and stop is None:
self._offset = (self._offset or 0) + start
@_generative(_no_statement_condition)
def limit(self, limit):
"""Apply a ``LIMIT`` to the query and return the newly resulting
``Query``.
"""
self._limit = limit
@_generative(_no_statement_condition)
def offset(self, offset):
"""Apply an ``OFFSET`` to the query and return the newly resulting
``Query``.
"""
self._offset = offset
@_generative(_no_statement_condition)
def distinct(self):
"""Apply a ``DISTINCT`` to the query and return the newly resulting
``Query``.
"""
self._distinct = True
def all(self):
"""Return the results represented by this ``Query`` as a list.
This results in an execution of the underlying query.
"""
return list(self)
@_generative(_no_clauseelement_condition)
def from_statement(self, statement):
"""Execute the given SELECT statement and return results.
This method bypasses all internal statement compilation, and the
statement is executed without modification.
The statement argument is either a string, a ``select()`` construct,
or a ``text()`` construct, and should return the set of columns
appropriate to the entity class represented by this ``Query``.
Also see the ``instances()`` method.
"""
if isinstance(statement, basestring):
statement = sql.text(statement)
if not isinstance(statement, (expression._TextClause, expression._SelectBaseMixin)):
raise sa_exc.ArgumentError("from_statement accepts text(), select(), and union() objects only.")
self._statement = statement
def first(self):
"""Return the first result of this ``Query`` or
None if the result doesn't contain any row.
first() applies a limit of one within the generated SQL, so that
only one primary entity row is generated on the server side
(note this may consist of multiple result rows if join-loaded
collections are present).
Calling ``first()`` results in an execution of the underlying query.
"""
if self._statement is not None:
ret = list(self)[0:1]
else:
ret = list(self[0:1])
if len(ret) > 0:
return ret[0]
else:
return None
def one(self):
"""Return exactly one result or raise an exception.
Raises ``sqlalchemy.orm.exc.NoResultFound`` if the query selects
no rows. Raises ``sqlalchemy.orm.exc.MultipleResultsFound``
if multiple object identities are returned, or if multiple
rows are returned for a query that does not return object
identities.
Note that an entity query, that is, one which selects one or
more mapped classes as opposed to individual column attributes,
may ultimately represent many rows but only one row of
unique entity or entities - this is a successful result for one().
Calling ``one()`` results in an execution of the underlying query.
As of 0.6, ``one()`` fully fetches all results instead of applying
any kind of limit, so that the "unique"-ing of entities does not
conceal multiple object identities.
"""
ret = list(self)
l = len(ret)
if l == 1:
return ret[0]
elif l == 0:
raise orm_exc.NoResultFound("No row was found for one()")
else:
raise orm_exc.MultipleResultsFound(
"Multiple rows were found for one()")
def scalar(self):
"""Return the first element of the first result or None
if no rows present. If multiple rows are returned,
raises MultipleResultsFound.
>>> session.query(Item).scalar()
<Item>
>>> session.query(Item.id).scalar()
1
>>> session.query(Item.id).filter(Item.id < 0).scalar()
None
>>> session.query(Item.id, Item.name).scalar()
1
>>> session.query(func.count(Parent.id)).scalar()
20
This results in an execution of the underlying query.
"""
try:
ret = self.one()
if not isinstance(ret, tuple):
return ret
return ret[0]
except orm_exc.NoResultFound:
return None
def __iter__(self):
context = self._compile_context()
context.statement.use_labels = True
if self._autoflush and not self._populate_existing:
self.session._autoflush()
return self._execute_and_instances(context)
def _execute_and_instances(self, querycontext):
result = self.session.execute(
querycontext.statement, params=self._params,
mapper=self._mapper_zero_or_none())
return self.instances(result, querycontext)
def instances(self, cursor, __context=None):
"""Given a ResultProxy cursor as returned by connection.execute(),
return an ORM result as an iterator.
e.g.::
result = engine.execute("select * from users")
for u in session.query(User).instances(result):
print u
"""
session = self.session
context = __context
if context is None:
context = QueryContext(self)
context.runid = _new_runid()
filtered = bool(list(self._mapper_entities))
single_entity = filtered and len(self._entities) == 1
if filtered:
if single_entity:
filter = lambda x: util.unique_list(x, util.IdentitySet)
else:
filter = util.unique_list
else:
filter = None
custom_rows = single_entity and \
'append_result' in self._entities[0].extension
(process, labels) = \
zip(*[
query_entity.row_processor(self, context, custom_rows)
for query_entity in self._entities
])
if not single_entity:
labels = [l for l in labels if l]
while True:
context.progress = {}
context.partials = {}
if self._yield_per:
fetch = cursor.fetchmany(self._yield_per)
if not fetch:
break
else:
fetch = cursor.fetchall()
if custom_rows:
rows = []
for row in fetch:
process[0](row, rows)
elif single_entity:
rows = [process[0](row, None) for row in fetch]
else:
rows = [util.NamedTuple([proc(row, None) for proc in process], labels)
for row in fetch]
if filter:
rows = filter(rows)
if context.refresh_state and self._only_load_props \
and context.refresh_state in context.progress:
context.refresh_state.commit(
context.refresh_state.dict, self._only_load_props)
context.progress.pop(context.refresh_state)
session._finalize_loaded(context.progress)
for ii, (dict_, attrs) in context.partials.iteritems():
ii.commit(dict_, attrs)
for row in rows:
yield row
if not self._yield_per:
break
def merge_result(self, iterator, load=True):
"""Merge a result into this Query's Session.
Given an iterator returned by a Query of the same structure as this one,
return an identical iterator of results, with all mapped instances
merged into the session using Session.merge(). This is an optimized
method which will merge all mapped instances, preserving the structure
of the result rows and unmapped columns with less method overhead than
that of calling Session.merge() explicitly for each value.
The structure of the results is determined based on the column list
of this Query - if these do not correspond, unchecked errors will occur.
The 'load' argument is the same as that of Session.merge().
"""
session = self.session
if load:
# flush current contents if we expect to load data
session._autoflush()
autoflush = session.autoflush
try:
session.autoflush = False
single_entity = len(self._entities) == 1
if single_entity:
if isinstance(self._entities[0], _MapperEntity):
result = [session._merge(
attributes.instance_state(instance),
attributes.instance_dict(instance),
load=load, _recursive={})
for instance in iterator]
else:
result = list(iterator)
else:
mapped_entities = [i for i, e in enumerate(self._entities)
if isinstance(e, _MapperEntity)]
result = []
for row in iterator:
newrow = list(row)
for i in mapped_entities:
newrow[i] = session._merge(
attributes.instance_state(newrow[i]),
attributes.instance_dict(newrow[i]),
load=load, _recursive={})
result.append(util.NamedTuple(newrow, row._labels))
return iter(result)
finally:
session.autoflush = autoflush
def _get(self, key=None, ident=None, refresh_state=None, lockmode=None,
only_load_props=None, passive=None):
lockmode = lockmode or self._lockmode
mapper = self._mapper_zero()
if not self._populate_existing and \
not refresh_state and \
not mapper.always_refresh and \
lockmode is None:
instance = self.session.identity_map.get(key)
if instance:
# item present in identity map with a different class
if not issubclass(instance.__class__, mapper.class_):
return None
state = attributes.instance_state(instance)
# expired - ensure it still exists
if state.expired:
if passive is attributes.PASSIVE_NO_FETCH:
return attributes.PASSIVE_NO_RESULT
try:
state()
except orm_exc.ObjectDeletedError:
self.session._remove_newly_deleted(state)
return None
return instance
elif passive is attributes.PASSIVE_NO_FETCH:
return attributes.PASSIVE_NO_RESULT
if ident is None:
if key is not None:
ident = key[1]
else:
ident = util.to_list(ident)
if refresh_state is None:
q = self._clone()
q._get_condition()
else:
q = self._clone()
if ident is not None:
(_get_clause, _get_params) = mapper._get_clause
# None present in ident - turn those comparisons
# into "IS NULL"
if None in ident:
nones = set([
_get_params[col].key for col, value in
zip(mapper.primary_key, ident) if value is None
])
_get_clause = sql_util.adapt_criterion_to_null(
_get_clause, nones)
_get_clause = q._adapt_clause(_get_clause, True, False)
q._criterion = _get_clause
params = dict([
(_get_params[primary_key].key, id_val)
for id_val, primary_key in zip(ident, mapper.primary_key)
])
if len(params) != len(mapper.primary_key):
raise sa_exc.InvalidRequestError(
"Incorrect number of values in identifier to formulate primary "
"key for query.get(); primary key columns are %s" %
','.join("'%s'" % c for c in mapper.primary_key))
q._params = params
if lockmode is not None:
q._lockmode = lockmode
q._get_options(
populate_existing=bool(refresh_state),
version_check=(lockmode is not None),
only_load_props=only_load_props,
refresh_state=refresh_state)
q._order_by = None
try:
return q.one()
except orm_exc.NoResultFound:
return None
@property
def _select_args(self):
return {
'limit':self._limit,
'offset':self._offset,
'distinct':self._distinct,
'group_by':self._group_by or None,
'having':self._having
}
@property
def _should_nest_selectable(self):
kwargs = self._select_args
return (kwargs.get('limit') is not None or
kwargs.get('offset') is not None or
kwargs.get('distinct', False))
def count(self):
"""Return a count of rows this Query would return.
For simple entity queries, count() issues
a SELECT COUNT, and will specifically count the primary
key column of the first entity only. If the query uses
LIMIT, OFFSET, or DISTINCT, count() will wrap the statement
generated by this Query in a subquery, from which a SELECT COUNT
is issued, so that the contract of "how many rows
would be returned?" is honored.
For queries that request specific columns or expressions,
count() again makes no assumptions about those expressions
and will wrap everything in a subquery. Therefore,
``Query.count()`` is usually not what you want in this case.
To count specific columns, often in conjunction with
GROUP BY, use ``func.count()`` as an individual column expression
instead of ``Query.count()``. See the ORM tutorial
for an example.
"""
should_nest = [self._should_nest_selectable]
def ent_cols(ent):
if isinstance(ent, _MapperEntity):
return ent.mapper.primary_key
else:
should_nest[0] = True
return [ent.column]
return self._col_aggregate(sql.literal_column('1'), sql.func.count,
nested_cols=chain(*[ent_cols(ent) for ent in self._entities]),
should_nest = should_nest[0]
)
def _col_aggregate(self, col, func, nested_cols=None, should_nest=False):
context = QueryContext(self)
for entity in self._entities:
entity.setup_context(self, context)
if context.from_clause:
from_obj = list(context.from_clause)
else:
from_obj = context.froms
self._adjust_for_single_inheritance(context)
whereclause = context.whereclause
if should_nest:
if not nested_cols:
nested_cols = [col]
else:
nested_cols = list(nested_cols)
s = sql.select(nested_cols, whereclause,
from_obj=from_obj, use_labels=True,
**self._select_args)
s = s.alias()
s = sql.select(
[func(s.corresponding_column(col) or col)]).select_from(s)
else:
s = sql.select([func(col)], whereclause, from_obj=from_obj,
**self._select_args)
if self._autoflush and not self._populate_existing:
self.session._autoflush()
return self.session.scalar(s, params=self._params,
mapper=self._mapper_zero())
def delete(self, synchronize_session='evaluate'):
"""Perform a bulk delete query.
Deletes rows matched by this query from the database.
:param synchronize_session: chooses the strategy for the removal of
matched objects from the session. Valid values are:
False - don't synchronize the session. This option is the most
efficient and is reliable once the session is expired, which
typically occurs after a commit(), or explicitly using
expire_all(). Before the expiration, objects may still remain in
the session which were in fact deleted which can lead to confusing
results if they are accessed via get() or already loaded
collections.
'fetch' - performs a select query before the delete to find
objects that are matched by the delete query and need to be
removed from the session. Matched objects are removed from the
session.
'evaluate' - Evaluate the query's criteria in Python straight on
the objects in the session. If evaluation of the criteria isn't
implemented, an error is raised. In that case you probably
want to use the 'fetch' strategy as a fallback.
The expression evaluator currently doesn't account for differing
string collations between the database and Python.
Returns the number of rows deleted, excluding any cascades.
The method does *not* offer in-Python cascading of relationships - it is
assumed that ON DELETE CASCADE is configured for any foreign key
references which require it. The Session needs to be expired (occurs
automatically after commit(), or call expire_all()) in order for the
state of dependent objects subject to delete or delete-orphan cascade
to be correctly represented.
Also, the ``before_delete()`` and ``after_delete()``
:class:`~sqlalchemy.orm.interfaces.MapperExtension` methods are not
called from this method. For a delete hook here, use the
``after_bulk_delete()``
:class:`~sqlalchemy.orm.interfaces.MapperExtension` method.
"""
#TODO: lots of duplication and ifs - probably needs to be refactored to strategies
#TODO: cascades need handling.
if synchronize_session not in [False, 'evaluate', 'fetch']:
raise sa_exc.ArgumentError("Valid strategies for session "
"synchronization are False, 'evaluate' and 'fetch'")
self._no_select_modifiers("delete")
self = self.enable_eagerloads(False)
context = self._compile_context()
if len(context.statement.froms) != 1 or \
not isinstance(context.statement.froms[0], schema.Table):
raise sa_exc.ArgumentError("Only deletion via a single table "
"query is currently supported")
primary_table = context.statement.froms[0]
session = self.session
if synchronize_session == 'evaluate':
try:
evaluator_compiler = evaluator.EvaluatorCompiler()
if self.whereclause is not None:
eval_condition = evaluator_compiler.process(self.whereclause)
else:
def eval_condition(obj):
return True
except evaluator.UnevaluatableError:
raise sa_exc.InvalidRequestError("Could not evaluate current criteria in Python. "
"Specify 'fetch' or False for the synchronize_session parameter.")
delete_stmt = sql.delete(primary_table, context.whereclause)
if synchronize_session == 'fetch':
#TODO: use RETURNING when available
select_stmt = context.statement.with_only_columns(primary_table.primary_key)
matched_rows = session.execute(select_stmt, params=self._params).fetchall()
if self._autoflush:
session._autoflush()
result = session.execute(delete_stmt, params=self._params)
if synchronize_session == 'evaluate':
target_cls = self._mapper_zero().class_
#TODO: detect when the where clause is a trivial primary key match
objs_to_expunge = [obj for (cls, pk),obj in session.identity_map.iteritems()
if issubclass(cls, target_cls) and eval_condition(obj)]
for obj in objs_to_expunge:
session._remove_newly_deleted(attributes.instance_state(obj))
elif synchronize_session == 'fetch':
target_mapper = self._mapper_zero()
for primary_key in matched_rows:
identity_key = target_mapper.identity_key_from_primary_key(list(primary_key))
if identity_key in session.identity_map:
session._remove_newly_deleted(attributes.instance_state(session.identity_map[identity_key]))
for ext in session.extensions:
ext.after_bulk_delete(session, self, context, result)
return result.rowcount
def update(self, values, synchronize_session='evaluate'):
"""Perform a bulk update query.
Updates rows matched by this query in the database.
:param values: a dictionary with attributes names as keys and literal
values or sql expressions as values.
:param synchronize_session: chooses the strategy to update the
attributes on objects in the session. Valid values are:
False - don't synchronize the session. This option is the most
efficient and is reliable once the session is expired, which
typically occurs after a commit(), or explicitly using
expire_all(). Before the expiration, updated objects may still
remain in the session with stale values on their attributes, which
can lead to confusing results.
'fetch' - performs a select query before the update to find
objects that are matched by the update query. The updated
attributes are expired on matched objects.
'evaluate' - Evaluate the Query's criteria in Python straight on
the objects in the session. If evaluation of the criteria isn't
implemented, an exception is raised.
The expression evaluator currently doesn't account for differing
string collations between the database and Python.
Returns the number of rows matched by the update.
The method does *not* offer in-Python cascading of relationships - it is assumed that
ON UPDATE CASCADE is configured for any foreign key references which require it.
The Session needs to be expired (occurs automatically after commit(), or call expire_all())
in order for the state of dependent objects subject foreign key cascade to be
correctly represented.
Also, the ``before_update()`` and ``after_update()`` :class:`~sqlalchemy.orm.interfaces.MapperExtension`
methods are not called from this method. For an update hook here, use the
``after_bulk_update()`` :class:`~sqlalchemy.orm.interfaces.SessionExtension` method.
"""
#TODO: value keys need to be mapped to corresponding sql cols and instr.attr.s to string keys
#TODO: updates of manytoone relationships need to be converted to fk assignments
#TODO: cascades need handling.
if synchronize_session == 'expire':
util.warn_deprecated("The 'expire' value as applied to "
"the synchronize_session argument of "
"query.update() is now called 'fetch'")
synchronize_session = 'fetch'
if synchronize_session not in [False, 'evaluate', 'fetch']:
raise sa_exc.ArgumentError("Valid strategies for session synchronization are False, 'evaluate' and 'fetch'")
self._no_select_modifiers("update")
self = self.enable_eagerloads(False)
context = self._compile_context()
if len(context.statement.froms) != 1 or not isinstance(context.statement.froms[0], schema.Table):
raise sa_exc.ArgumentError("Only update via a single table query is currently supported")
primary_table = context.statement.froms[0]
session = self.session
if synchronize_session == 'evaluate':
try:
evaluator_compiler = evaluator.EvaluatorCompiler()
if self.whereclause is not None:
eval_condition = evaluator_compiler.process(self.whereclause)
else:
def eval_condition(obj):
return True
value_evaluators = {}
for key,value in values.iteritems():
key = expression._column_as_key(key)
value_evaluators[key] = evaluator_compiler.process(expression._literal_as_binds(value))
except evaluator.UnevaluatableError:
raise sa_exc.InvalidRequestError("Could not evaluate current criteria in Python. "
"Specify 'fetch' or False for the synchronize_session parameter.")
update_stmt = sql.update(primary_table, context.whereclause, values)
if synchronize_session == 'fetch':
select_stmt = context.statement.with_only_columns(primary_table.primary_key)
matched_rows = session.execute(select_stmt, params=self._params).fetchall()
if self._autoflush:
session._autoflush()
result = session.execute(update_stmt, params=self._params)
if synchronize_session == 'evaluate':
target_cls = self._mapper_zero().class_
for (cls, pk),obj in session.identity_map.iteritems():
evaluated_keys = value_evaluators.keys()
if issubclass(cls, target_cls) and eval_condition(obj):
state, dict_ = attributes.instance_state(obj), attributes.instance_dict(obj)
# only evaluate unmodified attributes
to_evaluate = state.unmodified.intersection(evaluated_keys)
for key in to_evaluate:
dict_[key] = value_evaluators[key](obj)
state.commit(dict_, list(to_evaluate))
# expire attributes with pending changes
# (there was no autoflush, so they are overwritten)
state.expire_attributes(dict_, set(evaluated_keys).difference(to_evaluate))
elif synchronize_session == 'fetch':
target_mapper = self._mapper_zero()
for primary_key in matched_rows:
identity_key = target_mapper.identity_key_from_primary_key(list(primary_key))
if identity_key in session.identity_map:
session.expire(
session.identity_map[identity_key],
[expression._column_as_key(k) for k in values]
)
for ext in session.extensions:
ext.after_bulk_update(session, self, context, result)
return result.rowcount
def _compile_context(self, labels=True):
context = QueryContext(self)
if context.statement is not None:
return context
if self._lockmode:
try:
for_update = {'read': 'read',
'update': True,
'update_nowait': 'nowait',
None: False}[self._lockmode]
except KeyError:
raise sa_exc.ArgumentError("Unknown lockmode %r" % self._lockmode)
else:
for_update = False
for entity in self._entities:
entity.setup_context(self, context)
for rec in context.create_eager_joins:
strategy = rec[0]
strategy(*rec[1:])
eager_joins = context.eager_joins.values()
if context.from_clause:
froms = list(context.from_clause) # "load from explicit FROMs" mode,
# i.e. when select_from() or join() is used
else:
froms = context.froms # "load from discrete FROMs" mode,
# i.e. when each _MappedEntity has its own FROM
self._adjust_for_single_inheritance(context)
if not context.primary_columns:
if self._only_load_props:
raise sa_exc.InvalidRequestError(
"No column-based properties specified for refresh operation."
" Use session.expire() to reload collections and related items.")
else:
raise sa_exc.InvalidRequestError(
"Query contains no columns with which to SELECT from.")
if context.multi_row_eager_loaders and self._should_nest_selectable:
# for eager joins present and LIMIT/OFFSET/DISTINCT,
# wrap the query inside a select,
# then append eager joins onto that
if context.order_by:
order_by_col_expr = list(
chain(*[
sql_util.find_columns(o)
for o in context.order_by
])
)
else:
context.order_by = None
order_by_col_expr = []
inner = sql.select(
context.primary_columns + order_by_col_expr,
context.whereclause,
from_obj=froms,
use_labels=labels,
correlate=False,
order_by=context.order_by,
**self._select_args
)
for hint in self._with_hints:
inner = inner.with_hint(*hint)
if self._correlate:
inner = inner.correlate(*self._correlate)
inner = inner.alias()
equivs = self.__all_equivs()
context.adapter = sql_util.ColumnAdapter(inner, equivs)
statement = sql.select(
[inner] + context.secondary_columns,
for_update=for_update,
use_labels=labels)
if self._execution_options:
statement = statement.execution_options(**self._execution_options)
from_clause = inner
for eager_join in eager_joins:
# EagerLoader places a 'stop_on' attribute on the join,
# giving us a marker as to where the "splice point" of the join should be
from_clause = sql_util.splice_joins(from_clause, eager_join, eager_join.stop_on)
statement.append_from(from_clause)
if context.order_by:
statement.append_order_by(*context.adapter.copy_and_process(context.order_by))
statement.append_order_by(*context.eager_order_by)
else:
if not context.order_by:
context.order_by = None
if self._distinct and context.order_by:
order_by_col_expr = list(
chain(*[
sql_util.find_columns(o)
for o in context.order_by
])
)
context.primary_columns += order_by_col_expr
froms += tuple(context.eager_joins.values())
statement = sql.select(
context.primary_columns + context.secondary_columns,
context.whereclause,
from_obj=froms,
use_labels=labels,
for_update=for_update,
correlate=False,
order_by=context.order_by,
**self._select_args
)
for hint in self._with_hints:
statement = statement.with_hint(*hint)
if self._execution_options:
statement = statement.execution_options(**self._execution_options)
if self._correlate:
statement = statement.correlate(*self._correlate)
if context.eager_order_by:
statement.append_order_by(*context.eager_order_by)
context.statement = statement
return context
def _adjust_for_single_inheritance(self, context):
"""Apply single-table-inheritance filtering.
For all distinct single-table-inheritance mappers represented in the
columns clause of this query, add criterion to the WHERE clause of the
given QueryContext such that only the appropriate subtypes are
selected from the total results.
"""
for entity, (mapper, adapter, s, i, w) in self._mapper_adapter_map.iteritems():
single_crit = mapper._single_table_criterion
if single_crit is not None:
if adapter:
single_crit = adapter.traverse(single_crit)
single_crit = self._adapt_clause(single_crit, False, False)
context.whereclause = sql.and_(context.whereclause, single_crit)
def __str__(self):
return str(self._compile_context().statement)
class _QueryEntity(object):
"""represent an entity column returned within a Query result."""
def __new__(cls, *args, **kwargs):
if cls is _QueryEntity:
entity = args[1]
if not isinstance(entity, basestring) and _is_mapped_class(entity):
cls = _MapperEntity
else:
cls = _ColumnEntity
return object.__new__(cls)
def _clone(self):
q = self.__class__.__new__(self.__class__)
q.__dict__ = self.__dict__.copy()
return q
class _MapperEntity(_QueryEntity):
"""mapper/class/AliasedClass entity"""
def __init__(self, query, entity):
self.primary_entity = not query._entities
query._entities.append(self)
self.entities = [entity]
self.entity_zero = entity
def setup_entity(self, entity, mapper, adapter, from_obj, is_aliased_class, with_polymorphic):
self.mapper = mapper
self.extension = self.mapper.extension
self.adapter = adapter
self.selectable = from_obj
self._with_polymorphic = with_polymorphic
self._polymorphic_discriminator = None
self.is_aliased_class = is_aliased_class
if is_aliased_class:
self.path_entity = self.entity = self.entity_zero = entity
else:
self.path_entity = mapper
self.entity = self.entity_zero = mapper
def set_with_polymorphic(self, query, cls_or_mappers, selectable, discriminator):
if cls_or_mappers is None:
query._reset_polymorphic_adapter(self.mapper)
return
mappers, from_obj = self.mapper._with_polymorphic_args(cls_or_mappers, selectable)
self._with_polymorphic = mappers
self._polymorphic_discriminator = discriminator
# TODO: do the wrapped thing here too so that with_polymorphic() can be
# applied to aliases
if not self.is_aliased_class:
self.selectable = from_obj
self.adapter = query._get_polymorphic_adapter(self, from_obj)
def corresponds_to(self, entity):
if _is_aliased_class(entity) or self.is_aliased_class:
return entity is self.path_entity
else:
return entity.common_parent(self.path_entity)
def adapt_to_selectable(self, query, sel):
query._entities.append(self)
def _get_entity_clauses(self, query, context):
adapter = None
if not self.is_aliased_class and query._polymorphic_adapters:
adapter = query._polymorphic_adapters.get(self.mapper, None)
if not adapter and self.adapter:
adapter = self.adapter
if adapter:
if query._from_obj_alias:
ret = adapter.wrap(query._from_obj_alias)
else:
ret = adapter
else:
ret = query._from_obj_alias
return ret
def row_processor(self, query, context, custom_rows):
adapter = self._get_entity_clauses(query, context)
if context.adapter and adapter:
adapter = adapter.wrap(context.adapter)
elif not adapter:
adapter = context.adapter
# polymorphic mappers which have concrete tables in their hierarchy usually
# require row aliasing unconditionally.
if not adapter and self.mapper._requires_row_aliasing:
adapter = sql_util.ColumnAdapter(self.selectable, self.mapper._equivalent_columns)
if self.primary_entity:
_instance = self.mapper._instance_processor(context, (self.path_entity,), adapter,
extension=self.extension, only_load_props=query._only_load_props, refresh_state=context.refresh_state,
polymorphic_discriminator=self._polymorphic_discriminator
)
else:
_instance = self.mapper._instance_processor(context, (self.path_entity,), adapter,
polymorphic_discriminator=self._polymorphic_discriminator)
if self.is_aliased_class:
entname = self.entity._sa_label_name
else:
entname = self.mapper.class_.__name__
return _instance, entname
def setup_context(self, query, context):
adapter = self._get_entity_clauses(query, context)
context.froms += (self.selectable,)
if context.order_by is False and self.mapper.order_by:
context.order_by = self.mapper.order_by
# apply adaptation to the mapper's order_by if needed.
if adapter:
context.order_by = adapter.adapt_list(util.to_list(context.order_by))
for value in self.mapper._iterate_polymorphic_properties(self._with_polymorphic):
if query._only_load_props and value.key not in query._only_load_props:
continue
value.setup(
context,
self,
(self.path_entity,),
adapter,
only_load_props=query._only_load_props,
column_collection=context.primary_columns
)
if self._polymorphic_discriminator is not None:
if adapter:
pd = adapter.columns[self._polymorphic_discriminator]
else:
pd = self._polymorphic_discriminator
context.primary_columns.append(pd)
def __str__(self):
return str(self.mapper)
class _ColumnEntity(_QueryEntity):
"""Column/expression based entity."""
def __init__(self, query, column):
if isinstance(column, basestring):
column = sql.literal_column(column)
self._result_label = column.name
elif isinstance(column, attributes.QueryableAttribute):
self._result_label = column.key
column = column.__clause_element__()
else:
self._result_label = getattr(column, 'key', None)
if not isinstance(column, expression.ColumnElement) and hasattr(column, '_select_iterable'):
for c in column._select_iterable:
if c is column:
break
_ColumnEntity(query, c)
if c is not column:
return
if not isinstance(column, sql.ColumnElement):
raise sa_exc.InvalidRequestError(
"SQL expression, column, or mapped entity expected - got '%r'" % column
)
# if the Column is unnamed, give it a
# label() so that mutable column expressions
# can be located in the result even
# if the expression's identity has been changed
# due to adaption
if not column._label:
column = column.label(None)
query._entities.append(self)
self.column = column
self.froms = set()
# look for ORM entities represented within the
# given expression. Try to count only entities
# for columns whos FROM object is in the actual list
# of FROMs for the overall expression - this helps
# subqueries which were built from ORM constructs from
# leaking out their entities into the main select construct
actual_froms = set(column._from_objects)
self.entities = util.OrderedSet(
elem._annotations['parententity']
for elem in visitors.iterate(column, {})
if 'parententity' in elem._annotations
and actual_froms.intersection(elem._from_objects)
)
if self.entities:
self.entity_zero = list(self.entities)[0]
else:
self.entity_zero = None
def adapt_to_selectable(self, query, sel):
_ColumnEntity(query, sel.corresponding_column(self.column))
def setup_entity(self, entity, mapper, adapter, from_obj, is_aliased_class, with_polymorphic):
self.selectable = from_obj
self.froms.add(from_obj)
def corresponds_to(self, entity):
if self.entity_zero is None:
return False
elif _is_aliased_class(entity):
return entity is self.entity_zero
else:
return not _is_aliased_class(self.entity_zero) and \
entity.common_parent(self.entity_zero)
def _resolve_expr_against_query_aliases(self, query, expr, context):
return query._adapt_clause(expr, False, True)
def row_processor(self, query, context, custom_rows):
column = self._resolve_expr_against_query_aliases(query, self.column, context)
if context.adapter:
column = context.adapter.columns[column]
def proc(row, result):
return row[column]
return (proc, self._result_label)
def setup_context(self, query, context):
column = self._resolve_expr_against_query_aliases(query, self.column, context)
context.froms += tuple(self.froms)
context.primary_columns.append(column)
def __str__(self):
return str(self.column)
log.class_logger(Query)
class QueryContext(object):
multi_row_eager_loaders = False
adapter = None
froms = ()
def __init__(self, query):
if query._statement is not None:
if isinstance(query._statement, expression._SelectBaseMixin) and not query._statement.use_labels:
self.statement = query._statement.apply_labels()
else:
self.statement = query._statement
else:
self.statement = None
self.from_clause = query._from_obj
self.whereclause = query._criterion
self.order_by = query._order_by
self.query = query
self.session = query.session
self.populate_existing = query._populate_existing
self.version_check = query._version_check
self.refresh_state = query._refresh_state
self.primary_columns = []
self.secondary_columns = []
self.eager_order_by = []
self.eager_joins = {}
self.create_eager_joins = []
self.propagate_options = set(o for o in query._with_options if o.propagate_to_loaders)
self.attributes = query._attributes.copy()
class AliasOption(interfaces.MapperOption):
def __init__(self, alias):
self.alias = alias
def process_query(self, query):
if isinstance(self.alias, basestring):
alias = query._mapper_zero().mapped_table.alias(self.alias)
else:
alias = self.alias
query._from_obj_alias = sql_util.ColumnAdapter(alias)
_runid = 1L
_id_lock = util.threading.Lock()
def _new_runid():
global _runid
_id_lock.acquire()
try:
_runid += 1
return _runid
finally:
_id_lock.release()