""" Synopsis ======== SQLAlchemy object-relational configuration involves the use of :class:`~sqlalchemy.schema.Table`, :func:`~sqlalchemy.orm.mapper`, and class objects to define the three areas of configuration. :mod:`~sqlalchemy.ext.declarative` allows all three types of configuration to be expressed declaratively on an individual mapped class. Regular SQLAlchemy schema elements and ORM constructs are used in most cases. As a simple example:: from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() class SomeClass(Base): __tablename__ = 'some_table' id = Column(Integer, primary_key=True) name = Column(String(50)) Above, the :func:`declarative_base` callable returns a new base class from which all mapped classes should inherit. When the class definition is completed, a new :class:`~sqlalchemy.schema.Table` and :class:`~sqlalchemy.orm.mapper` will have been generated, accessible via the ``__table__`` and ``__mapper__`` attributes on the ``SomeClass`` class. Defining Attributes =================== In the above example, the :class:`~sqlalchemy.schema.Column` objects are automatically named with the name of the attribute to which they are assigned. They can also be explicitly named, and that name does not have to be the same as name assigned on the class. The column will be assigned to the :class:`~sqlalchemy.schema.Table` using the given name, and mapped to the class using the attribute name:: class SomeClass(Base): __tablename__ = 'some_table' id = Column("some_table_id", Integer, primary_key=True) name = Column("name", String(50)) Attributes may be added to the class after its construction, and they will be added to the underlying :class:`~sqlalchemy.schema.Table` and :func:`~sqlalchemy.orm.mapper()` definitions as appropriate:: SomeClass.data = Column('data', Unicode) SomeClass.related = relationship(RelatedInfo) Classes which are mapped explicitly using :func:`~sqlalchemy.orm.mapper()` can interact freely with declarative classes. It is recommended, though not required, that all tables share the same underlying :class:`~sqlalchemy.schema.MetaData` object, so that string-configured :class:`~sqlalchemy.schema.ForeignKey` references can be resolved without issue. Association of Metadata and Engine ================================== The :func:`declarative_base` base class contains a :class:`~sqlalchemy.schema.MetaData` object where newly defined :class:`~sqlalchemy.schema.Table` objects are collected. This is accessed via the :class:`~sqlalchemy.schema.MetaData` class level accessor, so to create tables we can say:: engine = create_engine('sqlite://') Base.metadata.create_all(engine) The :class:`~sqlalchemy.engine.base.Engine` created above may also be directly associated with the declarative base class using the ``bind`` keyword argument, where it will be associated with the underlying :class:`~sqlalchemy.schema.MetaData` object and allow SQL operations involving that metadata and its tables to make use of that engine automatically:: Base = declarative_base(bind=create_engine('sqlite://')) Alternatively, by way of the normal :class:`~sqlalchemy.schema.MetaData` behaviour, the ``bind`` attribute of the class level accessor can be assigned at any time as follows:: Base.metadata.bind = create_engine('sqlite://') The :func:`declarative_base` can also receive a pre-created :class:`~sqlalchemy.schema.MetaData` object, which allows a declarative setup to be associated with an already existing traditional collection of :class:`~sqlalchemy.schema.Table` objects:: mymetadata = MetaData() Base = declarative_base(metadata=mymetadata) Configuring Relationships ========================= Relationships to other classes are done in the usual way, with the added feature that the class specified to :func:`~sqlalchemy.orm.relationship` may be a string name (note that :func:`~sqlalchemy.orm.relationship` is only available as of SQLAlchemy 0.6beta2, and in all prior versions is known as :func:`~sqlalchemy.orm.relation`, including 0.5 and 0.4). The "class registry" associated with ``Base`` is used at mapper compilation time to resolve the name into the actual class object, which is expected to have been defined once the mapper configuration is used:: class User(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) name = Column(String(50)) addresses = relationship("Address", backref="user") class Address(Base): __tablename__ = 'addresses' id = Column(Integer, primary_key=True) email = Column(String(50)) user_id = Column(Integer, ForeignKey('users.id')) Column constructs, since they are just that, are immediately usable, as below where we define a primary join condition on the ``Address`` class using them:: class Address(Base): __tablename__ = 'addresses' id = Column(Integer, primary_key=True) email = Column(String(50)) user_id = Column(Integer, ForeignKey('users.id')) user = relationship(User, primaryjoin=user_id == User.id) In addition to the main argument for :func:`~sqlalchemy.orm.relationship`, other arguments which depend upon the columns present on an as-yet undefined class may also be specified as strings. These strings are evaluated as Python expressions. The full namespace available within this evaluation includes all classes mapped for this declarative base, as well as the contents of the ``sqlalchemy`` package, including expression functions like :func:`~sqlalchemy.sql.expression.desc` and :attr:`~sqlalchemy.sql.expression.func`:: class User(Base): # .... addresses = relationship("Address", order_by="desc(Address.email)", primaryjoin="Address.user_id==User.id") As an alternative to string-based attributes, attributes may also be defined after all classes have been created. Just add them to the target class after the fact:: User.addresses = relationship(Address, primaryjoin=Address.user_id==User.id) Configuring Many-to-Many Relationships ====================================== There's nothing special about many-to-many with declarative. The ``secondary`` argument to :func:`~sqlalchemy.orm.relationship` still requires a :class:`~sqlalchemy.schema.Table` object, not a declarative class. The :class:`~sqlalchemy.schema.Table` should share the same :class:`~sqlalchemy.schema.MetaData` object used by the declarative base:: keywords = Table( 'keywords', Base.metadata, Column('author_id', Integer, ForeignKey('authors.id')), Column('keyword_id', Integer, ForeignKey('keywords.id')) ) class Author(Base): __tablename__ = 'authors' id = Column(Integer, primary_key=True) keywords = relationship("Keyword", secondary=keywords) You should generally **not** map a class and also specify its table in a many-to-many relationship, since the ORM may issue duplicate INSERT and DELETE statements. Defining Synonyms ================= Synonyms are introduced in :ref:`synonyms`. To define a getter/setter which proxies to an underlying attribute, use :func:`~sqlalchemy.orm.synonym` with the ``descriptor`` argument:: class MyClass(Base): __tablename__ = 'sometable' _attr = Column('attr', String) def _get_attr(self): return self._some_attr def _set_attr(self, attr): self._some_attr = attr attr = synonym('_attr', descriptor=property(_get_attr, _set_attr)) The above synonym is then usable as an instance attribute as well as a class-level expression construct:: x = MyClass() x.attr = "some value" session.query(MyClass).filter(MyClass.attr == 'some other value').all() For simple getters, the :func:`synonym_for` decorator can be used in conjunction with ``@property``:: class MyClass(Base): __tablename__ = 'sometable' _attr = Column('attr', String) @synonym_for('_attr') @property def attr(self): return self._some_attr Similarly, :func:`comparable_using` is a front end for the :func:`~sqlalchemy.orm.comparable_property` ORM function:: class MyClass(Base): __tablename__ = 'sometable' name = Column('name', String) @comparable_using(MyUpperCaseComparator) @property def uc_name(self): return self.name.upper() Table Configuration =================== Table arguments other than the name, metadata, and mapped Column arguments are specified using the ``__table_args__`` class attribute. This attribute accommodates both positional as well as keyword arguments that are normally sent to the :class:`~sqlalchemy.schema.Table` constructor. The attribute can be specified in one of two forms. One is as a dictionary:: class MyClass(Base): __tablename__ = 'sometable' __table_args__ = {'mysql_engine':'InnoDB'} The other, a tuple of the form ``(arg1, arg2, ..., {kwarg1:value, ...})``, which allows positional arguments to be specified as well (usually constraints):: class MyClass(Base): __tablename__ = 'sometable' __table_args__ = ( ForeignKeyConstraint(['id'], ['remote_table.id']), UniqueConstraint('foo'), {'autoload':True} ) Note that the keyword parameters dictionary is required in the tuple form even if empty. As an alternative to ``__tablename__``, a direct :class:`~sqlalchemy.schema.Table` construct may be used. The :class:`~sqlalchemy.schema.Column` objects, which in this case require their names, will be added to the mapping just like a regular mapping to a table:: class MyClass(Base): __table__ = Table('my_table', Base.metadata, Column('id', Integer, primary_key=True), Column('name', String(50)) ) Mapper Configuration ==================== Configuration of mappers is done with the :func:`~sqlalchemy.orm.mapper` function and all the possible mapper configuration parameters can be found in the documentation for that function. :func:`~sqlalchemy.orm.mapper` is still used by declaratively mapped classes and keyword parameters to the function can be passed by placing them in the ``__mapper_args__`` class variable:: class Widget(Base): __tablename__ = 'widgets' id = Column(Integer, primary_key=True) __mapper_args__ = {'extension': MyWidgetExtension()} Inheritance Configuration ========================= Declarative supports all three forms of inheritance as intuitively as possible. The ``inherits`` mapper keyword argument is not needed as declarative will determine this from the class itself. The various "polymorphic" keyword arguments are specified using ``__mapper_args__``. Joined Table Inheritance ~~~~~~~~~~~~~~~~~~~~~~~~ Joined table inheritance is defined as a subclass that defines its own table:: class Person(Base): __tablename__ = 'people' id = Column(Integer, primary_key=True) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Engineer(Person): __tablename__ = 'engineers' __mapper_args__ = {'polymorphic_identity': 'engineer'} id = Column(Integer, ForeignKey('people.id'), primary_key=True) primary_language = Column(String(50)) Note that above, the ``Engineer.id`` attribute, since it shares the same attribute name as the ``Person.id`` attribute, will in fact represent the ``people.id`` and ``engineers.id`` columns together, and will render inside a query as ``"people.id"``. To provide the ``Engineer`` class with an attribute that represents only the ``engineers.id`` column, give it a different attribute name:: class Engineer(Person): __tablename__ = 'engineers' __mapper_args__ = {'polymorphic_identity': 'engineer'} engineer_id = Column('id', Integer, ForeignKey('people.id'), primary_key=True) primary_language = Column(String(50)) Single Table Inheritance ~~~~~~~~~~~~~~~~~~~~~~~~ Single table inheritance is defined as a subclass that does not have its own table; you just leave out the ``__table__`` and ``__tablename__`` attributes:: class Person(Base): __tablename__ = 'people' id = Column(Integer, primary_key=True) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Engineer(Person): __mapper_args__ = {'polymorphic_identity': 'engineer'} primary_language = Column(String(50)) When the above mappers are configured, the ``Person`` class is mapped to the ``people`` table *before* the ``primary_language`` column is defined, and this column will not be included in its own mapping. When ``Engineer`` then defines the ``primary_language`` column, the column is added to the ``people`` table so that it is included in the mapping for ``Engineer`` and is also part of the table's full set of columns. Columns which are not mapped to ``Person`` are also excluded from any other single or joined inheriting classes using the ``exclude_properties`` mapper argument. Below, ``Manager`` will have all the attributes of ``Person`` and ``Manager`` but *not* the ``primary_language`` attribute of ``Engineer``:: class Manager(Person): __mapper_args__ = {'polymorphic_identity': 'manager'} golf_swing = Column(String(50)) The attribute exclusion logic is provided by the ``exclude_properties`` mapper argument, and declarative's default behavior can be disabled by passing an explicit ``exclude_properties`` collection (empty or otherwise) to the ``__mapper_args__``. Concrete Table Inheritance ~~~~~~~~~~~~~~~~~~~~~~~~~~ Concrete is defined as a subclass which has its own table and sets the ``concrete`` keyword argument to ``True``:: class Person(Base): __tablename__ = 'people' id = Column(Integer, primary_key=True) name = Column(String(50)) class Engineer(Person): __tablename__ = 'engineers' __mapper_args__ = {'concrete':True} id = Column(Integer, primary_key=True) primary_language = Column(String(50)) name = Column(String(50)) Usage of an abstract base class is a little less straightforward as it requires usage of :func:`~sqlalchemy.orm.util.polymorphic_union`:: engineers = Table('engineers', Base.metadata, Column('id', Integer, primary_key=True), Column('name', String(50)), Column('primary_language', String(50)) ) managers = Table('managers', Base.metadata, Column('id', Integer, primary_key=True), Column('name', String(50)), Column('golf_swing', String(50)) ) punion = polymorphic_union({ 'engineer':engineers, 'manager':managers }, 'type', 'punion') class Person(Base): __table__ = punion __mapper_args__ = {'polymorphic_on':punion.c.type} class Engineer(Person): __table__ = engineers __mapper_args__ = {'polymorphic_identity':'engineer', 'concrete':True} class Manager(Person): __table__ = managers __mapper_args__ = {'polymorphic_identity':'manager', 'concrete':True} Mix-in Classes ============== A common need when using :mod:`~sqlalchemy.ext.declarative` is to share some functionality, often a set of columns, across many classes. The normal python idiom would be to put this common code into a base class and have all the other classes subclass this class. When using :mod:`~sqlalchemy.ext.declarative`, this need is met by using a "mix-in class". A mix-in class is one that isn't mapped to a table and doesn't subclass the declarative :class:`Base`. For example:: class MyMixin(object): __table_args__ = {'mysql_engine':'InnoDB'} __mapper_args__=dict(always_refresh=True) id = Column(Integer, primary_key=True) def foo(self): return 'bar'+str(self.id) class MyModel(Base,MyMixin): __tablename__='test' name = Column(String(1000), nullable=False, index=True) As the above example shows, ``__table_args__`` and ``__mapper_args__`` can both be abstracted out into a mix-in if you use common values for these across many classes. However, particularly in the case of ``__table_args__``, you may want to combine some parameters from several mix-ins with those you wish to define on the class iteself. To help with this, a :func:`~sqlalchemy.util.classproperty` decorator is provided that lets you implement a class property with a function. For example:: from sqlalchemy.util import classproperty class MySQLSettings: __table_args__ = {'mysql_engine':'InnoDB'} class MyOtherMixin: __table_args__ = {'info':'foo'} class MyModel(Base,MySQLSettings,MyOtherMixin): __tablename__='my_model' @classproperty def __table_args__(self): args = dict() args.update(MySQLSettings.__table_args__) args.update(MyOtherMixin.__table_args__) return args id = Column(Integer, primary_key=True) Class Constructor ================= As a convenience feature, the :func:`declarative_base` sets a default constructor on classes which takes keyword arguments, and assigns them to the named attributes:: e = Engineer(primary_language='python') Sessions ======== Note that ``declarative`` does nothing special with sessions, and is only intended as an easier way to configure mappers and :class:`~sqlalchemy.schema.Table` objects. A typical application setup using :func:`~sqlalchemy.orm.scoped_session` might look like:: engine = create_engine('postgresql://scott:tiger@localhost/test') Session = scoped_session(sessionmaker(autocommit=False, autoflush=False, bind=engine)) Base = declarative_base() Mapped instances then make usage of :class:`~sqlalchemy.orm.session.Session` in the usual way. """ from sqlalchemy.schema import Table, Column, MetaData from sqlalchemy.orm import synonym as _orm_synonym, mapper, comparable_property, class_mapper from sqlalchemy.orm.interfaces import MapperProperty from sqlalchemy.orm.properties import RelationshipProperty, ColumnProperty from sqlalchemy.orm.util import _is_mapped_class from sqlalchemy import util, exceptions from sqlalchemy.sql import util as sql_util __all__ = 'declarative_base', 'synonym_for', 'comparable_using', 'instrument_declarative' def instrument_declarative(cls, registry, metadata): """Given a class, configure the class declaratively, using the given registry, which can be any dictionary, and MetaData object. """ if '_decl_class_registry' in cls.__dict__: raise exceptions.InvalidRequestError( "Class %r already has been " "instrumented declaratively" % cls) cls._decl_class_registry = registry cls.metadata = metadata _as_declarative(cls, cls.__name__, cls.__dict__) def _as_declarative(cls, classname, dict_): # dict_ will be a dictproxy, which we can't write to, and we need to! dict_ = dict(dict_) column_copies = dict() unmapped_mixins = False for base in cls.__bases__: names = dir(base) if not _is_mapped_class(base): unmapped_mixins = True for name in names: obj = getattr(base,name, None) if isinstance(obj, Column): if obj.foreign_keys: raise exceptions.InvalidRequestError( "Columns with foreign keys to other columns " "are not allowed on declarative mixins at this time." ) dict_[name]=column_copies[obj]=obj.copy() elif isinstance(obj, RelationshipProperty): raise exceptions.InvalidRequestError( "relationships are not allowed on " "declarative mixins at this time.") # doing it this way enables these attributes to be descriptors get_mapper_args = '__mapper_args__' in dict_ get_table_args = '__table_args__' in dict_ if unmapped_mixins: get_mapper_args = get_mapper_args or getattr(cls,'__mapper_args__',None) get_table_args = get_table_args or getattr(cls,'__table_args__',None) tablename = getattr(cls,'__tablename__',None) if tablename: # subtle: if tablename is a descriptor here, we actually # put the wrong value in, but it serves as a marker to get # the right value value... dict_['__tablename__']=tablename # now that we know whether or not to get these, get them from the class # if we should, enabling them to be decorators mapper_args = get_mapper_args and cls.__mapper_args__ or {} table_args = get_table_args and cls.__table_args__ or None # make sure that column copies are used rather than the original columns # from any mixins for k, v in mapper_args.iteritems(): mapper_args[k] = column_copies.get(v,v) cls._decl_class_registry[classname] = cls our_stuff = util.OrderedDict() for k in dict_: value = dict_[k] if (isinstance(value, tuple) and len(value) == 1 and isinstance(value[0], (Column, MapperProperty))): util.warn("Ignoring declarative-like tuple value of attribute " "%s: possibly a copy-and-paste error with a comma " "left at the end of the line?" % k) continue if not isinstance(value, (Column, MapperProperty)): continue prop = _deferred_relationship(cls, value) our_stuff[k] = prop # set up attributes in the order they were created our_stuff.sort(key=lambda key: our_stuff[key]._creation_order) # extract columns from the class dict cols = [] for key, c in our_stuff.iteritems(): if isinstance(c, ColumnProperty): for col in c.columns: if isinstance(col, Column) and col.table is None: _undefer_column_name(key, col) cols.append(col) elif isinstance(c, Column): _undefer_column_name(key, c) cols.append(c) # if the column is the same name as the key, # remove it from the explicit properties dict. # the normal rules for assigning column-based properties # will take over, including precedence of columns # in multi-column ColumnProperties. if key == c.key: del our_stuff[key] table = None if '__table__' not in dict_: if '__tablename__' in dict_: # see above: if __tablename__ is a descriptor, this # means we get the right value used! tablename = cls.__tablename__ if isinstance(table_args, dict): args, table_kw = (), table_args elif isinstance(table_args, tuple): args = table_args[0:-1] table_kw = table_args[-1] if len(table_args) < 2 or not isinstance(table_kw, dict): raise exceptions.ArgumentError( "Tuple form of __table_args__ is " "(arg1, arg2, arg3, ..., {'kw1':val1, 'kw2':val2, ...})" ) else: args, table_kw = (), {} autoload = dict_.get('__autoload__') if autoload: table_kw['autoload'] = True cls.__table__ = table = Table(tablename, cls.metadata, *(tuple(cols) + tuple(args)), **table_kw) else: table = cls.__table__ if cols: for c in cols: if not table.c.contains_column(c): raise exceptions.ArgumentError( "Can't add additional column %r when specifying __table__" % key ) if 'inherits' not in mapper_args: for c in cls.__bases__: if _is_mapped_class(c): mapper_args['inherits'] = cls._decl_class_registry.get(c.__name__, None) break if hasattr(cls, '__mapper_cls__'): mapper_cls = util.unbound_method_to_callable(cls.__mapper_cls__) else: mapper_cls = mapper if table is None and 'inherits' not in mapper_args: raise exceptions.InvalidRequestError( "Class %r does not have a __table__ or __tablename__ " "specified and does not inherit from an existing table-mapped class." % cls ) elif 'inherits' in mapper_args and not mapper_args.get('concrete', False): inherited_mapper = class_mapper(mapper_args['inherits'], compile=False) inherited_table = inherited_mapper.local_table if 'inherit_condition' not in mapper_args and table is not None: # figure out the inherit condition with relaxed rules # about nonexistent tables, to allow for ForeignKeys to # not-yet-defined tables (since we know for sure that our # parent table is defined within the same MetaData) mapper_args['inherit_condition'] = sql_util.join_condition( mapper_args['inherits'].__table__, table, ignore_nonexistent_tables=True) if table is None: # single table inheritance. # ensure no table args if table_args is not None: raise exceptions.ArgumentError( "Can't place __table_args__ on an inherited class with no table." ) # add any columns declared here to the inherited table. for c in cols: if c.primary_key: raise exceptions.ArgumentError( "Can't place primary key columns on an inherited class with no table." ) if c.name in inherited_table.c: raise exceptions.ArgumentError( "Column '%s' on class %s conflicts with existing column '%s'" % (c, cls, inherited_table.c[c.name]) ) inherited_table.append_column(c) # single or joined inheritance # exclude any cols on the inherited table which are not mapped on the # parent class, to avoid # mapping columns specific to sibling/nephew classes inherited_mapper = class_mapper(mapper_args['inherits'], compile=False) inherited_table = inherited_mapper.local_table if 'exclude_properties' not in mapper_args: mapper_args['exclude_properties'] = exclude_properties = \ set([c.key for c in inherited_table.c if c not in inherited_mapper._columntoproperty]) exclude_properties.difference_update([c.key for c in cols]) cls.__mapper__ = mapper_cls(cls, table, properties=our_stuff, **mapper_args) class DeclarativeMeta(type): def __init__(cls, classname, bases, dict_): if '_decl_class_registry' in cls.__dict__: return type.__init__(cls, classname, bases, dict_) _as_declarative(cls, classname, cls.__dict__) return type.__init__(cls, classname, bases, dict_) def __setattr__(cls, key, value): if '__mapper__' in cls.__dict__: if isinstance(value, Column): _undefer_column_name(key, value) cls.__table__.append_column(value) cls.__mapper__.add_property(key, value) elif isinstance(value, ColumnProperty): for col in value.columns: if isinstance(col, Column) and col.table is None: _undefer_column_name(key, col) cls.__table__.append_column(col) cls.__mapper__.add_property(key, value) elif isinstance(value, MapperProperty): cls.__mapper__.add_property(key, _deferred_relationship(cls, value)) else: type.__setattr__(cls, key, value) else: type.__setattr__(cls, key, value) class _GetColumns(object): def __init__(self, cls): self.cls = cls def __getattr__(self, key): mapper = class_mapper(self.cls, compile=False) if mapper: prop = mapper.get_property(key) if not isinstance(prop, ColumnProperty): raise exceptions.InvalidRequestError( "Property %r is not an instance of" " ColumnProperty (i.e. does not correspond" " directly to a Column)." % key) return getattr(self.cls, key) def _deferred_relationship(cls, prop): def resolve_arg(arg): import sqlalchemy def access_cls(key): if key in cls._decl_class_registry: return _GetColumns(cls._decl_class_registry[key]) elif key in cls.metadata.tables: return cls.metadata.tables[key] else: return sqlalchemy.__dict__[key] d = util.PopulateDict(access_cls) def return_cls(): try: x = eval(arg, globals(), d) if isinstance(x, _GetColumns): return x.cls else: return x except NameError, n: raise exceptions.InvalidRequestError( "When compiling mapper %s, expression %r failed to locate a name (%r). " "If this is a class name, consider adding this relationship() to the %r " "class after both dependent classes have been defined." % ( prop.parent, arg, n.args[0], cls)) return return_cls if isinstance(prop, RelationshipProperty): for attr in ('argument', 'order_by', 'primaryjoin', 'secondaryjoin', 'secondary', '_foreign_keys', 'remote_side'): v = getattr(prop, attr) if isinstance(v, basestring): setattr(prop, attr, resolve_arg(v)) if prop.backref and isinstance(prop.backref, tuple): key, kwargs = prop.backref for attr in ('primaryjoin', 'secondaryjoin', 'secondary', 'foreign_keys', 'remote_side', 'order_by'): if attr in kwargs and isinstance(kwargs[attr], basestring): kwargs[attr] = resolve_arg(kwargs[attr]) return prop def synonym_for(name, map_column=False): """Decorator, make a Python @property a query synonym for a column. A decorator version of :func:`~sqlalchemy.orm.synonym`. The function being decorated is the 'descriptor', otherwise passes its arguments through to synonym():: @synonym_for('col') @property def prop(self): return 'special sauce' The regular ``synonym()`` is also usable directly in a declarative setting and may be convenient for read/write properties:: prop = synonym('col', descriptor=property(_read_prop, _write_prop)) """ def decorate(fn): return _orm_synonym(name, map_column=map_column, descriptor=fn) return decorate def comparable_using(comparator_factory): """Decorator, allow a Python @property to be used in query criteria. This is a decorator front end to :func:`~sqlalchemy.orm.comparable_property` that passes through the comparator_factory and the function being decorated:: @comparable_using(MyComparatorType) @property def prop(self): return 'special sauce' The regular ``comparable_property()`` is also usable directly in a declarative setting and may be convenient for read/write properties:: prop = comparable_property(MyComparatorType) """ def decorate(fn): return comparable_property(comparator_factory, fn) return decorate def _declarative_constructor(self, **kwargs): """A simple constructor that allows initialization from kwargs. Sets attributes on the constructed instance using the names and values in ``kwargs``. Only keys that are present as attributes of the instance's class are allowed. These could be, for example, any mapped columns or relationships. """ for k in kwargs: if not hasattr(type(self), k): raise TypeError( "%r is an invalid keyword argument for %s" % (k, type(self).__name__)) setattr(self, k, kwargs[k]) _declarative_constructor.__name__ = '__init__' def declarative_base(bind=None, metadata=None, mapper=None, cls=object, name='Base', constructor=_declarative_constructor, metaclass=DeclarativeMeta): """Construct a base class for declarative class definitions. The new base class will be given a metaclass that produces appropriate :class:`~sqlalchemy.schema.Table` objects and makes the appropriate :func:`~sqlalchemy.orm.mapper` calls based on the information provided declaratively in the class and any subclasses of the class. :param bind: An optional :class:`~sqlalchemy.engine.base.Connectable`, will be assigned the ``bind`` attribute on the :class:`~sqlalchemy.MetaData` instance. :param metadata: An optional :class:`~sqlalchemy.MetaData` instance. All :class:`~sqlalchemy.schema.Table` objects implicitly declared by subclasses of the base will share this MetaData. A MetaData instance will be created if none is provided. The :class:`~sqlalchemy.MetaData` instance will be available via the `metadata` attribute of the generated declarative base class. :param mapper: An optional callable, defaults to :func:`~sqlalchemy.orm.mapper`. Will be used to map subclasses to their Tables. :param cls: Defaults to :class:`object`. A type to use as the base for the generated declarative base class. May be a class or tuple of classes. :param name: Defaults to ``Base``. The display name for the generated class. Customizing this is not required, but can improve clarity in tracebacks and debugging. :param constructor: Defaults to :func:`~sqlalchemy.ext.declarative._declarative_constructor`, an __init__ implementation that assigns \**kwargs for declared fields and relationships to an instance. If ``None`` is supplied, no __init__ will be provided and construction will fall back to cls.__init__ by way of the normal Python semantics. :param metaclass: Defaults to :class:`DeclarativeMeta`. A metaclass or __metaclass__ compatible callable to use as the meta type of the generated declarative base class. """ lcl_metadata = metadata or MetaData() if bind: lcl_metadata.bind = bind bases = not isinstance(cls, tuple) and (cls,) or cls class_dict = dict(_decl_class_registry=dict(), metadata=lcl_metadata) if constructor: class_dict['__init__'] = constructor if mapper: class_dict['__mapper_cls__'] = mapper return metaclass(name, bases, class_dict) def _undefer_column_name(key, column): if column.key is None: column.key = key if column.name is None: column.name = key