dibbler/sqlalchemy/dialects/postgresql/array.py

315 lines
10 KiB
Python
Raw Normal View History

2017-04-15 18:33:29 +02:00
# postgresql/array.py
# Copyright (C) 2005-2017 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php
from .base import ischema_names
from ...sql import expression, operators
from ...sql.base import SchemaEventTarget
from ... import types as sqltypes
try:
from uuid import UUID as _python_UUID
except ImportError:
_python_UUID = None
def Any(other, arrexpr, operator=operators.eq):
"""A synonym for the :meth:`.ARRAY.Comparator.any` method.
This method is legacy and is here for backwards-compatibility.
.. seealso::
:func:`.expression.any_`
"""
return arrexpr.any(other, operator)
def All(other, arrexpr, operator=operators.eq):
"""A synonym for the :meth:`.ARRAY.Comparator.all` method.
This method is legacy and is here for backwards-compatibility.
.. seealso::
:func:`.expression.all_`
"""
return arrexpr.all(other, operator)
class array(expression.Tuple):
"""A PostgreSQL ARRAY literal.
This is used to produce ARRAY literals in SQL expressions, e.g.::
from sqlalchemy.dialects.postgresql import array
from sqlalchemy.dialects import postgresql
from sqlalchemy import select, func
stmt = select([
array([1,2]) + array([3,4,5])
])
print stmt.compile(dialect=postgresql.dialect())
Produces the SQL::
SELECT ARRAY[%(param_1)s, %(param_2)s] ||
ARRAY[%(param_3)s, %(param_4)s, %(param_5)s]) AS anon_1
An instance of :class:`.array` will always have the datatype
:class:`.ARRAY`. The "inner" type of the array is inferred from
the values present, unless the ``type_`` keyword argument is passed::
array(['foo', 'bar'], type_=CHAR)
.. versionadded:: 0.8 Added the :class:`~.postgresql.array` literal type.
See also:
:class:`.postgresql.ARRAY`
"""
__visit_name__ = 'array'
def __init__(self, clauses, **kw):
super(array, self).__init__(*clauses, **kw)
self.type = ARRAY(self.type)
def _bind_param(self, operator, obj, _assume_scalar=False, type_=None):
if _assume_scalar or operator is operators.getitem:
# if getitem->slice were called, Indexable produces
# a Slice object from that
assert isinstance(obj, int)
return expression.BindParameter(
None, obj, _compared_to_operator=operator,
type_=type_,
_compared_to_type=self.type, unique=True)
else:
return array([
self._bind_param(operator, o, _assume_scalar=True, type_=type_)
for o in obj])
def self_group(self, against=None):
if (against in (
operators.any_op, operators.all_op, operators.getitem)):
return expression.Grouping(self)
else:
return self
CONTAINS = operators.custom_op("@>", precedence=5)
CONTAINED_BY = operators.custom_op("<@", precedence=5)
OVERLAP = operators.custom_op("&&", precedence=5)
class ARRAY(SchemaEventTarget, sqltypes.ARRAY):
"""PostgreSQL ARRAY type.
.. versionchanged:: 1.1 The :class:`.postgresql.ARRAY` type is now
a subclass of the core :class:`.types.ARRAY` type.
The :class:`.postgresql.ARRAY` type is constructed in the same way
as the core :class:`.types.ARRAY` type; a member type is required, and a
number of dimensions is recommended if the type is to be used for more
than one dimension::
from sqlalchemy.dialects import postgresql
mytable = Table("mytable", metadata,
Column("data", postgresql.ARRAY(Integer, dimensions=2))
)
The :class:`.postgresql.ARRAY` type provides all operations defined on the
core :class:`.types.ARRAY` type, including support for "dimensions", indexed
access, and simple matching such as :meth:`.types.ARRAY.Comparator.any`
and :meth:`.types.ARRAY.Comparator.all`. :class:`.postgresql.ARRAY` class also
provides PostgreSQL-specific methods for containment operations, including
:meth:`.postgresql.ARRAY.Comparator.contains`
:meth:`.postgresql.ARRAY.Comparator.contained_by`,
and :meth:`.postgresql.ARRAY.Comparator.overlap`, e.g.::
mytable.c.data.contains([1, 2])
The :class:`.postgresql.ARRAY` type may not be supported on all
PostgreSQL DBAPIs; it is currently known to work on psycopg2 only.
Additionally, the :class:`.postgresql.ARRAY` type does not work directly in
conjunction with the :class:`.ENUM` type. For a workaround, see the
special type at :ref:`postgresql_array_of_enum`.
.. seealso::
:class:`.types.ARRAY` - base array type
:class:`.postgresql.array` - produces a literal array value.
"""
class Comparator(sqltypes.ARRAY.Comparator):
"""Define comparison operations for :class:`.ARRAY`.
Note that these operations are in addition to those provided
by the base :class:`.types.ARRAY.Comparator` class, including
:meth:`.types.ARRAY.Comparator.any` and
:meth:`.types.ARRAY.Comparator.all`.
"""
def contains(self, other, **kwargs):
"""Boolean expression. Test if elements are a superset of the
elements of the argument array expression.
"""
return self.operate(CONTAINS, other, result_type=sqltypes.Boolean)
def contained_by(self, other):
"""Boolean expression. Test if elements are a proper subset of the
elements of the argument array expression.
"""
return self.operate(
CONTAINED_BY, other, result_type=sqltypes.Boolean)
def overlap(self, other):
"""Boolean expression. Test if array has elements in common with
an argument array expression.
"""
return self.operate(OVERLAP, other, result_type=sqltypes.Boolean)
comparator_factory = Comparator
def __init__(self, item_type, as_tuple=False, dimensions=None,
zero_indexes=False):
"""Construct an ARRAY.
E.g.::
Column('myarray', ARRAY(Integer))
Arguments are:
:param item_type: The data type of items of this array. Note that
dimensionality is irrelevant here, so multi-dimensional arrays like
``INTEGER[][]``, are constructed as ``ARRAY(Integer)``, not as
``ARRAY(ARRAY(Integer))`` or such.
:param as_tuple=False: Specify whether return results
should be converted to tuples from lists. DBAPIs such
as psycopg2 return lists by default. When tuples are
returned, the results are hashable.
:param dimensions: if non-None, the ARRAY will assume a fixed
number of dimensions. This will cause the DDL emitted for this
ARRAY to include the exact number of bracket clauses ``[]``,
and will also optimize the performance of the type overall.
Note that PG arrays are always implicitly "non-dimensioned",
meaning they can store any number of dimensions no matter how
they were declared.
:param zero_indexes=False: when True, index values will be converted
between Python zero-based and PostgreSQL one-based indexes, e.g.
a value of one will be added to all index values before passing
to the database.
.. versionadded:: 0.9.5
"""
if isinstance(item_type, ARRAY):
raise ValueError("Do not nest ARRAY types; ARRAY(basetype) "
"handles multi-dimensional arrays of basetype")
if isinstance(item_type, type):
item_type = item_type()
self.item_type = item_type
self.as_tuple = as_tuple
self.dimensions = dimensions
self.zero_indexes = zero_indexes
@property
def hashable(self):
return self.as_tuple
@property
def python_type(self):
return list
def compare_values(self, x, y):
return x == y
def _set_parent(self, column):
"""Support SchemaEventTarget"""
if isinstance(self.item_type, SchemaEventTarget):
self.item_type._set_parent(column)
def _set_parent_with_dispatch(self, parent):
"""Support SchemaEventTarget"""
if isinstance(self.item_type, SchemaEventTarget):
self.item_type._set_parent_with_dispatch(parent)
def _proc_array(self, arr, itemproc, dim, collection):
if dim is None:
arr = list(arr)
if dim == 1 or dim is None and (
# this has to be (list, tuple), or at least
# not hasattr('__iter__'), since Py3K strings
# etc. have __iter__
not arr or not isinstance(arr[0], (list, tuple))):
if itemproc:
return collection(itemproc(x) for x in arr)
else:
return collection(arr)
else:
return collection(
self._proc_array(
x, itemproc,
dim - 1 if dim is not None else None,
collection)
for x in arr
)
def bind_processor(self, dialect):
item_proc = self.item_type.dialect_impl(dialect).\
bind_processor(dialect)
def process(value):
if value is None:
return value
else:
return self._proc_array(
value,
item_proc,
self.dimensions,
list)
return process
def result_processor(self, dialect, coltype):
item_proc = self.item_type.dialect_impl(dialect).\
result_processor(dialect, coltype)
def process(value):
if value is None:
return value
else:
return self._proc_array(
value,
item_proc,
self.dimensions,
tuple if self.as_tuple else list)
return process
ischema_names['_array'] = ARRAY