347 lines
10 KiB
Rust
347 lines
10 KiB
Rust
|
/* OpenTally: Open-source election vote counting
|
||
|
* Copyright © 2021 Lee Yingtong Li (RunasSudo)
|
||
|
*
|
||
|
* This program is free software: you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU Affero General Public License as published by
|
||
|
* the Free Software Foundation, either version 3 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU Affero General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Affero General Public License
|
||
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
use ndarray::{Array, Dimension, IxDyn};
|
||
|
|
||
|
use std::fmt;
|
||
|
use std::ops;
|
||
|
|
||
|
#[derive(Debug)]
|
||
|
enum ConstraintError {
|
||
|
NoConformantResult,
|
||
|
}
|
||
|
|
||
|
#[derive(Clone)]
|
||
|
struct ConstraintMatrixCell {
|
||
|
elected: usize,
|
||
|
min: usize,
|
||
|
max: usize,
|
||
|
cands: usize,
|
||
|
}
|
||
|
|
||
|
struct ConstraintMatrix(Array<ConstraintMatrixCell, IxDyn>);
|
||
|
|
||
|
impl ConstraintMatrix {
|
||
|
pub fn new(constraints: &mut [usize]) -> Self {
|
||
|
// Add 1 to dimensions for totals cells
|
||
|
for c in constraints.iter_mut() {
|
||
|
*c += 1;
|
||
|
}
|
||
|
|
||
|
return Self(Array::from_elem(
|
||
|
IxDyn(constraints),
|
||
|
ConstraintMatrixCell {
|
||
|
elected: 0,
|
||
|
min: 0,
|
||
|
max: 0,
|
||
|
cands: 0,
|
||
|
}
|
||
|
));
|
||
|
}
|
||
|
|
||
|
pub fn init(&mut self) {
|
||
|
let indices: Vec<IxDyn> = ndarray::indices(self.0.shape()).into_iter().collect();
|
||
|
|
||
|
// Compute candidate totals
|
||
|
self.recount_cands();
|
||
|
|
||
|
// Initialise max for grand total cell
|
||
|
let idx = IxDyn(&vec![0; self.0.ndim()][..]);
|
||
|
self.0[&idx].max = self.0[&idx].cands;
|
||
|
|
||
|
// Initialise max for inner cells (>=2 zeroes)
|
||
|
for idx in indices.iter() {
|
||
|
if (0..idx.ndim()).fold(0, |acc, d| if idx[d] != 0 { acc + 1 } else { acc }) < 2 {
|
||
|
continue;
|
||
|
}
|
||
|
self.0[idx].max = self.0[idx].cands;
|
||
|
}
|
||
|
|
||
|
// NB: Bounds on min, max, etc. will be further refined in initial step() calls
|
||
|
}
|
||
|
|
||
|
pub fn recount_cands(&mut self) {
|
||
|
let shape = Vec::from(self.0.shape());
|
||
|
let indices: Vec<IxDyn> = ndarray::indices(self.0.shape()).into_iter().collect();
|
||
|
|
||
|
// Compute cands/elected totals
|
||
|
for nzeroes in 1..self.0.ndim()+1 {
|
||
|
for idx in indices.iter() {
|
||
|
// First compute totals cells with 1 zero, then 2 zeroes, ... then grand total (all zeroes)
|
||
|
if (0..idx.ndim()).fold(0, |acc, d| if idx[d] == 0 { acc + 1 } else { acc }) != nzeroes {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
self.0[idx].cands = 0;
|
||
|
self.0[idx].elected = 0;
|
||
|
|
||
|
// The axis along which to sum - if multiple, just pick the first, as these should agree
|
||
|
let zero_axis = (0..idx.ndim()).filter(|d| idx[*d] == 0).next().unwrap();
|
||
|
|
||
|
// Traverse along the axis and sum the candidates
|
||
|
let mut idx2 = idx.clone();
|
||
|
for coord in 1..shape[zero_axis] {
|
||
|
idx2[zero_axis] = coord;
|
||
|
self.0[idx].cands += self.0[&idx2].cands;
|
||
|
self.0[idx].elected += self.0[&idx2].elected;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pub fn step(&mut self) -> Result<bool, ConstraintError> {
|
||
|
let shape = Vec::from(self.0.shape());
|
||
|
let indices: Vec<IxDyn> = ndarray::indices(self.0.shape()).into_iter().collect();
|
||
|
|
||
|
for idx in indices.iter() {
|
||
|
let cell = &mut self.0[idx];
|
||
|
|
||
|
// Rule 1: Ensure elected < min < max < cands
|
||
|
if cell.min < cell.elected {
|
||
|
cell.min = cell.elected;
|
||
|
return Ok(false);
|
||
|
}
|
||
|
if cell.max > cell.cands {
|
||
|
cell.max = cell.cands;
|
||
|
return Ok(false);
|
||
|
}
|
||
|
if cell.min > cell.max {
|
||
|
return Err(ConstraintError::NoConformantResult);
|
||
|
}
|
||
|
|
||
|
let nzeroes = (0..idx.ndim()).fold(0, |acc, d| if idx[d] == 0 { acc + 1 } else { acc });
|
||
|
|
||
|
// Rule 2/3: Ensure min/max is possible in inner cells
|
||
|
if nzeroes == 0 {
|
||
|
for axis in 0..self.0.ndim() {
|
||
|
let mut idx2 = idx.clone();
|
||
|
|
||
|
// What is the min/max number of candidates that can be elected from other cells in this axis?
|
||
|
let (other_max, other_min) = (1..shape[axis]).fold((0, 0), |(acc_max, acc_min), coord| {
|
||
|
if coord == idx[axis] {
|
||
|
return (acc_max, acc_min);
|
||
|
}
|
||
|
idx2[axis] = coord;
|
||
|
return (acc_max + self.0[&idx2].max, acc_min + self.0[&idx2].min);
|
||
|
});
|
||
|
|
||
|
// What is the min/max number of candidates that can be elected along this axis?
|
||
|
idx2[axis] = 0;
|
||
|
let axis_max = self.0[&idx2].max;
|
||
|
let axis_min = self.0[&idx2].min;
|
||
|
|
||
|
// How many must be elected from this cell?
|
||
|
let this_max = (axis_max as i32) - (other_min as i32);
|
||
|
let this_min = (axis_min as i32) - (other_max as i32);
|
||
|
|
||
|
if this_max < (self.0[idx].max as i32) {
|
||
|
self.0[idx].max = this_max as usize;
|
||
|
return Ok(false);
|
||
|
}
|
||
|
if this_min > (self.0[idx].min as i32) {
|
||
|
self.0[idx].min = this_min as usize;
|
||
|
return Ok(false);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Rule 4/5: Ensure min/max is possible in totals cells
|
||
|
if nzeroes > 0 {
|
||
|
for axis in 0..self.0.ndim() {
|
||
|
if idx[axis] != 0 {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// What is the total min/max along this axis?
|
||
|
let mut idx2 = idx.clone();
|
||
|
let (axis_max, axis_min) = (1..shape[axis]).fold((0, 0), |(acc_max, acc_min), coord| {
|
||
|
idx2[axis] = coord;
|
||
|
return (acc_max + self.0[&idx2].max, acc_min + self.0[&idx2].min);
|
||
|
});
|
||
|
|
||
|
if axis_max < self.0[idx].max {
|
||
|
self.0[idx].max = axis_max;
|
||
|
return Ok(false);
|
||
|
}
|
||
|
if axis_min > self.0[idx].min {
|
||
|
self.0[idx].min = axis_min;
|
||
|
return Ok(false);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Ok(true);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl fmt::Display for ConstraintMatrix {
|
||
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> std::fmt::Result {
|
||
|
let shape = self.0.shape();
|
||
|
|
||
|
let mut result = String::new();
|
||
|
|
||
|
// TODO: ≠2 dimensions
|
||
|
for y in 0..shape[1] {
|
||
|
result.push_str("+");
|
||
|
for _ in 0..shape[0] {
|
||
|
result.push_str(if y == 1 { "=============+" } else { "-------------+" });
|
||
|
}
|
||
|
result.push_str("\n");
|
||
|
|
||
|
result.push_str("|");
|
||
|
for x in 0..shape[0] {
|
||
|
result.push_str(&format!(" Elected: {:2}", self[&[x, y]].elected));
|
||
|
result.push_str(if x == 0 { " ‖" } else { " |" });
|
||
|
}
|
||
|
result.push_str("\n");
|
||
|
|
||
|
result.push_str("|");
|
||
|
for x in 0..shape[0] {
|
||
|
result.push_str(&format!(" Min: {:2}", self[&[x, y]].min));
|
||
|
result.push_str(if x == 0 { " ‖" } else { " |" });
|
||
|
}
|
||
|
result.push_str("\n");
|
||
|
|
||
|
result.push_str("|");
|
||
|
for x in 0..shape[0] {
|
||
|
result.push_str(&format!(" Max: {:2}", self[&[x, y]].max));
|
||
|
result.push_str(if x == 0 { " ‖" } else { " |" });
|
||
|
}
|
||
|
result.push_str("\n");
|
||
|
|
||
|
result.push_str("|");
|
||
|
for x in 0..shape[0] {
|
||
|
result.push_str(&format!(" Cands: {:2}", self[&[x, y]].cands));
|
||
|
result.push_str(if x == 0 { " ‖" } else { " |" });
|
||
|
}
|
||
|
result.push_str("\n");
|
||
|
}
|
||
|
|
||
|
result.push_str("+");
|
||
|
for _ in 0..shape[0] {
|
||
|
result.push_str("-------------+");
|
||
|
}
|
||
|
result.push_str("\n");
|
||
|
|
||
|
return f.write_str(&result);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl ops::Index<&[usize]> for ConstraintMatrix {
|
||
|
type Output = ConstraintMatrixCell;
|
||
|
fn index(&self, index: &[usize]) -> &Self::Output { &self.0[index] }
|
||
|
}
|
||
|
impl ops::IndexMut<&[usize]> for ConstraintMatrix {
|
||
|
fn index_mut(&mut self, index: &[usize]) -> &mut Self::Output { &mut self.0[index] }
|
||
|
}
|
||
|
|
||
|
#[cfg(test)]
|
||
|
mod tests {
|
||
|
use super::*;
|
||
|
|
||
|
fn assert_cell(cm: &ConstraintMatrix, idx: &[usize], elected: usize, min: usize, max: usize, cands: usize) {
|
||
|
assert_eq!(cm[idx].elected, elected, "Failed to validate elected at {:?}", idx);
|
||
|
assert_eq!(cm[idx].min, min, "Failed to validate min at {:?}", idx);
|
||
|
assert_eq!(cm[idx].max, max, "Failed to validate min at {:?}", idx);
|
||
|
assert_eq!(cm[idx].cands, cands, "Failed to validate cands at {:?}", idx);
|
||
|
}
|
||
|
|
||
|
#[test]
|
||
|
fn cm_otten() {
|
||
|
let mut cm = ConstraintMatrix::new(&mut [3, 2]);
|
||
|
|
||
|
// Totals
|
||
|
let c = &mut cm[&[0, 1]]; c.min = 7; c.max = 7;
|
||
|
let c = &mut cm[&[0, 2]]; c.min = 7; c.max = 7;
|
||
|
let c = &mut cm[&[1, 0]]; c.min = 7; c.max = 7;
|
||
|
let c = &mut cm[&[2, 0]]; c.min = 6; c.max = 6;
|
||
|
let c = &mut cm[&[3, 0]]; c.min = 1; c.max = 1;
|
||
|
|
||
|
// Candidates
|
||
|
let c = &mut cm[&[1, 1]]; c.cands = 4;
|
||
|
let c = &mut cm[&[2, 1]]; c.cands = 11;
|
||
|
let c = &mut cm[&[3, 1]]; c.cands = 2;
|
||
|
let c = &mut cm[&[1, 2]]; c.cands = 7;
|
||
|
let c = &mut cm[&[2, 2]]; c.cands = 3;
|
||
|
let c = &mut cm[&[3, 2]]; c.cands = 1;
|
||
|
|
||
|
// Init
|
||
|
cm.init();
|
||
|
while !cm.step().expect("No conformant result") {}
|
||
|
println!("{}", cm);
|
||
|
|
||
|
assert_cell(&cm, &[1, 1], 0, 0, 4, 4);
|
||
|
assert_cell(&cm, &[2, 1], 0, 3, 6, 11);
|
||
|
assert_cell(&cm, &[3, 1], 0, 0, 1, 2);
|
||
|
assert_cell(&cm, &[0, 1], 0, 7, 7, 17);
|
||
|
assert_cell(&cm, &[1, 2], 0, 3, 7, 7);
|
||
|
assert_cell(&cm, &[2, 2], 0, 0, 3, 3);
|
||
|
assert_cell(&cm, &[3, 2], 0, 0, 1, 1);
|
||
|
assert_cell(&cm, &[0, 2], 0, 7, 7, 11);
|
||
|
assert_cell(&cm, &[1, 0], 0, 7, 7, 11);
|
||
|
assert_cell(&cm, &[2, 0], 0, 6, 6, 14);
|
||
|
assert_cell(&cm, &[3, 0], 0, 1, 1, 3);
|
||
|
assert_cell(&cm, &[0, 0], 0, 14, 14, 28);
|
||
|
|
||
|
// Election of Welsh man
|
||
|
cm[&[3, 1]].elected += 1;
|
||
|
cm.recount_cands();
|
||
|
while !cm.step().expect("No conformant result") {}
|
||
|
println!("{}", cm);
|
||
|
|
||
|
assert_cell(&cm, &[1, 1], 0, 0, 3, 4);
|
||
|
assert_cell(&cm, &[2, 1], 0, 3, 6, 11);
|
||
|
assert_cell(&cm, &[3, 1], 1, 1, 1, 2);
|
||
|
assert_cell(&cm, &[0, 1], 1, 7, 7, 17); // Error in Otten paper
|
||
|
assert_cell(&cm, &[1, 2], 0, 4, 7, 7);
|
||
|
assert_cell(&cm, &[2, 2], 0, 0, 3, 3);
|
||
|
assert_cell(&cm, &[3, 2], 0, 0, 0, 1);
|
||
|
assert_cell(&cm, &[0, 2], 0, 7, 7, 11);
|
||
|
assert_cell(&cm, &[1, 0], 0, 7, 7, 11);
|
||
|
assert_cell(&cm, &[2, 0], 0, 6, 6, 14);
|
||
|
assert_cell(&cm, &[3, 0], 1, 1, 1, 3);
|
||
|
assert_cell(&cm, &[0, 0], 1, 14, 14, 28);
|
||
|
|
||
|
// Remaining Welsh man, Welsh woman doomed
|
||
|
cm[&[3, 1]].cands -= 1;
|
||
|
cm[&[3, 2]].cands -= 1;
|
||
|
|
||
|
// Election of 2 English men, 2 English women
|
||
|
// Exclusion of 1 Scottish woman
|
||
|
cm[&[1, 1]].elected += 2;
|
||
|
cm[&[1, 2]].elected += 2;
|
||
|
cm[&[2, 2]].cands -= 1;
|
||
|
cm.recount_cands();
|
||
|
while !cm.step().expect("No conformant result") {}
|
||
|
println!("{}", cm);
|
||
|
|
||
|
assert_cell(&cm, &[1, 1], 2, 2, 2, 4);
|
||
|
assert_cell(&cm, &[2, 1], 0, 4, 4, 11);
|
||
|
assert_cell(&cm, &[3, 1], 1, 1, 1, 1);
|
||
|
assert_cell(&cm, &[0, 1], 3, 7, 7, 16); // Error in Otten paper
|
||
|
assert_cell(&cm, &[1, 2], 2, 5, 5, 7);
|
||
|
assert_cell(&cm, &[2, 2], 0, 2, 2, 2);
|
||
|
assert_cell(&cm, &[3, 2], 0, 0, 0, 0);
|
||
|
assert_cell(&cm, &[0, 2], 2, 7, 7, 9);
|
||
|
assert_cell(&cm, &[1, 0], 4, 7, 7, 11);
|
||
|
assert_cell(&cm, &[2, 0], 0, 6, 6, 13);
|
||
|
assert_cell(&cm, &[3, 0], 1, 1, 1, 1);
|
||
|
assert_cell(&cm, &[0, 0], 5, 14, 14, 25);
|
||
|
}
|
||
|
}
|