
Pythonsk 3D
Eksempler er i stor grad lånt fra
https://github.com/vispy/vispy/blob/master/examples

Motivasjon

3D grafikk er en bra måte å vise frem data.

3D ser sinnsykt kult ut.

GPU’er kan brukes til utregning, og det er lurt å
ha en forståelse av hvordan de virker.

Kort om GPU

En GPU har mange små prosessorkjerner som
deler minne i flere hierarkier.

Disse prosessorene gjør gjerne utregning per
kant i en overflate (vertex shader) eller per
punkt i en overflate (fragment shader)

Kort om GPU 2

En GPU mottar store mengder data på en
gang. Dette kalles en buffer.

Etter å ha sendt en buffer ønsker vi kun å
oppdatere de delene som vi vet har endret seg.

Kort om GPU 3

Vi bygger opp polygoner med å knytte vertexer
(kanter) sammen.

Vi bestemmer selv hvor mange vertexer av
gangen som skal settes sammen til et polygon.

Vi ønsker å ikke bruke mer avanserte
polygoner enn trekanter

Vår første vertex shader
uniform float scale;

attribute vec2 position;

attribute vec4 color;

varying vec4 v_color;

void main()

{

 gl_Position = vec4(position*scale, 0.0, 1.0);

 v_color = color;

}

Verdier vi
ønsker å gi
fra Python

Funksjonen blir kjørt en gang per
vertex vi sender

Setter koordinatet til
vertexen til å tilsvare
vår “position”.

Sender farge videre til
fragment shader

Vår første fragment shader
varying vec4 v_color;

void main()

{

 gl_FragColor = v_color;

}

Tar inn fargeverdien.

Setter fragmentet til å ha samme fargeverdi
som den vi sendte videre.

Typer

● Float, bool og int.
● Noen få skjermkort støtter double
● Vi har også structs fra C

Typer 2

● const - compile time
● attribute - Data som er forskjellig per vertex.

Bare tilgjengelig for vertex.
● uniform - Per primitiv (read only vertex og

fragment)
● varying - Skrives av vertex, leses av

fragment.

Hva er fargen mellom to punkter?

Hvor kommer Python og Vispy inn?

Vispy binder GL, vindustegning og numpy
sammen.

Vi skriver fortsatt shadere i GLSL.

Men vi kan generere formene/dataene våre i
gode gamle python.

Vispy.app

App lager det vi ser på skjermen.

c = app.Canvas(keys=’interactive’)

Vispy.gloo

Gloo lager bufferen og shaderene vi sender til
GPU.

program = gloo.Program(vertex, fragment)

Callbacks

Vi henger en funksjon på en allerede
eksisterende funksjon.

I vårt tilfelle ønsker vi kanskje at mer enn en
ting blir gjordt når vi får en event.
Eksempelvis endre verden når vinduet blir
skalert.

Vi plotter en graf

Vi lager en kube

Vi får kuben til å rotere

Greie funksjoner å vite om

Translate
Rotate
glModel
np.linspace

Vispy vs the world

matplotlib: Penere grafer for rapporter, men har
lang kjøretid
PyQtGraph:
PyOpenGL:
Pygments:

